Mining Data from Mobile Devices

Applications: Location, Ads, Privacy

Spiros Papadimitriou, Tina Eliassi-Rad
{spiros.papadimitriou, tina.eliassi}@rutgers.edu

Ad Targeting on Mobile Devices

- Need reliable location information
 - We collected 21.6M RTB requests on Wed 2/6/2013
 - The majority of them (57%) did **not** have location information

- Reasons behind the missing location information
 1. The RTB system did not forward it
 2. The SSP did not forward it
 3. The device did not capture it
 4. The user did not enable location-based services

- RTB: Real-Time Bid
- SSP: Supply Side Provider

Problem Definition

- Accurately infer location information for IPs in RTB requests
- What type of location information should we infer?
 - Latitude, longitude
 - Census Block Groups (CBGs)
 - Zip codes
 -...

Census Block Groups (CBGs)

- Assumption
 - CBGs comprise location information fine-grained enough for useful hyper-local ad targeting, yet coarse-grained enough to avoid major privacy concerns.

- Why is this reasonable?
 - Covers a contiguous area
 - Never crosses state or county boundaries
 - Contains between 600 and 3,000 people
 - US is divided into ~212K CBGs

- US is divided into ~8.2M CBs
- US is divided into 43K zip codes

Geo-locating IP addresses on mobile networks is hard

- Balakrishnan et al. (IMC 2009) examined properties of cell-phone IP addresses
- Mobile IPs are ephemeral and their addresses are itinerant
- Example: An individual cell phone can report different IP addresses to various servers within a short time-period

- Answers to IP — Location queries provided by 7 geo-location services; the actual cell phone is in Mountain View, CA.

Many devices often use the same public IP address

- Metwally & Paduano (KDD 2011) estimated the number of users of an IP address by keeping track of the application-specific traffic
- The primary goal of their work was to combat “abusive” traffic (such as DDoS attacks, ad click fraud and email spam) without violating the user privacy

Hyperlocal: A Graph Mining Solution*

1. Classify IPs as mobile vs. non-mobile
2. Construct a movement graph with mobile and non-mobile IP nodes
3. Use a local relational classifier on each unknown node to infer latitude and longitude
4. Assign Census Block Group (CBG) ID to the inferred latitude and longitude using a k-nearest neighbor approach

* http://eliassi.org/ESM2013TR.pdf

1. Classifying IPs as Mobile vs. Non-mobile

- Mobile IPs tend to change position more quickly than non-mobile IPs
- Default r = 100m (range of current Wi-Fi routers)

2. Constructing IP x IP Movement Graph

- Circle nodes are non-mobile IPs
- Diamond nodes are mobile IPs
- Mobile IPs are time-stamped because they are transient
- An edge indicates an NUID’s movement from one IP to another
- Each edge
 - # of movements between its endpoints, and
 - inter-arrival times (IATs) for all movements across it

3. Employing Local Relational Classifiers

- Why local?
 - The farther out one moves in the movement graph, the farther away one gets geographically
 - The movement graph is big → non-local approaches can be computationally burdensome
- Local relational classifier used: wvRN
 - wvRN stands for weighted-vote Relational Neighbor [Macskassy & Provost, JMLR 2007]
 - wvRN estimates the class membership probabilities and assumes homophily in the network data
What weights should we use in \(wvRN \)?

- Number of movements
 - Intuition: A node \(v \) will be closer in distance to its neighbors with whom it has more movements
 - The data contains many edges with only one movement
- Minimum IAT
 - Intuition: The longer the IAT, the longer distance the user has potentially moved (sans traffic)
 - Uses the normalized minimum IAT between two IPs
- Weight on the movement between node \(v \) and its neighbor \(i \) is
 \[
 W_i = \frac{\text{minIAT}_v}{\text{minIAT}(t)}
 \]
 - \(\text{minIAT}_v \) is the minimum IAT across all of a given node \(v \)'s edge

\(wvRN \) Equations

- Inputs
 - Node \(v \)
 - Its neighbors \(Nbr(v) \)
 - Weights \(W \) on the edges between \(v \) and its neighbors
- \(wvRN \) equations
 \[
 \text{latitude}(v) = \frac{P}{\left(2Nbr(v)W_i\right)} \sum_{i \in Nbr(v)} \text{latitude}(i)
 \]
 \[
 \text{longitude}(v) = \frac{P}{\left(2Nbr(v)W_i\right)} \sum_{i \in Nbr(v)} \text{longitude}(i)
 \]

4. Assigning CBGs as Proxies for Location

- Infer location of a hashed public IP address at the CBG level and not at the \(\langle \text{latitude}, \text{longitude} \rangle \) level
- Why use CBG?
 1. It provides a more consistent labeling (as in location) for IPs
 2. It allows incorporation of external data that uses census data such as demographics
 3. In the majority of mobile applications, this level of location information is sufficient for a successful campaign

A \(k \)-Nearest Neighbor Approach for Assigning a CBG ID to a \(\langle \text{lat}, \text{lon} \rangle \)

- Inputs
 - Location of interest
 - \(loc = \langle \text{lat}, \text{lon} \rangle \)
 - For each CBG \(j \) in the US,
 - \(j \)'s centroid: \(c_j = \langle \text{lat}_j, \text{lon}_j \rangle \)
 - \(j \)'s area \(a_j \) in km
- Output
 - The CBG ID that contains \(loc \)
- Procedure
 1. \(C = \) centroids of the \(k \) nearest CBGs to \(loc \)
 2. For \(j \) in \(C \)
 - Calculate the distance between \(loc \) & centroid of the \(j \)th nearest CBG
 - \(d_j = \text{distance}(\text{loc}, c_j) \)
 -
 - \(r_j = \sqrt{a_j / \pi} \)
 - Calculate the ratio of distance over radius
 - \(\text{ratio}_j = d_j / r_j \)
 3. Return the CBG ID corresponding to \(\text{min(ratio)} \), for all \(j \) in \(C \)

Recap of Hyperlocal

1. Classify IPs as mobile vs. non-mobile
2. Construct a movement graph with mobile and non-mobile IP nodes
3. Use a local relational classifier on each unknown node to infer latitude and longitude
4. Assign Census Block Group (CBG) ID to the inferred latitude and longitude using a \(k \)-nearest neighbor approach

Experiments

- Experiments are divided into nine combinations of infer location for \(X \) using \(Y \)
 - Values for \(X \) are ‘all IPs’, ‘mobile IPs’, and ‘non-mobile IPs’
 - Values for \(Y \) are ‘all neighbors’, ‘mobile neighbors’, and ‘non-mobile neighbors’
- Measure accuracy by checking the predicted CBG ID vs. the actual CBG ID of an IP

* http://eliassi.org/ESM2013TR.pdf
Implementation & Runtime

- Hardware & OS: Macbook Pro with
 - CPU 2.66 GHz Intel Core i7
 - RAM 8 GB DDR3
 - hard drive 500 GB SSD
 - OS X 10.8
- Language: Python
- Supporting Software: NetworkX & MongoDB
- Runtime: On average 1.2 milliseconds to process each RTB request

Data

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Collection Date</th>
<th># RTB Requests with Valid US NUIDs</th>
<th>% RTB Requests without Location</th>
<th>% RTB Requests from Mobile IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-2012</td>
<td>Mon 10/01/2012</td>
<td>44.1M</td>
<td>36.5%</td>
<td>57.3%</td>
</tr>
<tr>
<td>Feb-2013</td>
<td>Wed 02/06/2013</td>
<td>21.6M</td>
<td>56.7%</td>
<td>47.7%</td>
</tr>
</tbody>
</table>

- From Oct-2012 to Feb-2013
- # of RTB requests decreased by ~50%
- Due to reductions from SSPs
- # of requests without location information increased by ~55%
- # of requests from mobile IPs decreased by ~17%

All IPs are hashed public IP addresses.

IPs on the US Map

Oct-2012

Oct-2013

Data Characteristics per SSP

SSP4 provides about 50% of the requests for both datasets.

% Requests with and without Location Information per SSP

- None of the requests from SSP1 and SSP3 have location information.
- All the requests from SSP7 have location information.

Oct-2012 Homophily per SSP

There is a considerable overlap with other SSPs that provide location information

% IPs from SSP1 requests that connect to other SSPs

% IPs from SSP3 requests that connect to other SSPs
There is a considerable overlap with other SSPs that provide location information.

% IPs from SSP1 requests that connect to other SSPs

% IPs from SSP3 requests that connect to other SSPs

There is a considerable homophily in the IP×IP movement graph.

Core Results: wvRN(minIAT) vs. wvRN(numMoves)

- Differences between the two methods are not statistically significant at the 0.05 level.
- Number of predictions varies depending on the particular inference and the neighbor types used in the inference process.

IATs on movement edges are correlated with distances:

- Shorter IAT, shorter distance.
- For IPs with only one known neighbor, restricting IAT to ≤ 60 minutes.
 - Improves accuracy by an average of 12% on Oct-2012 and 23% on Feb-2013 data.
 - Reduces the number of predictions by an average of 4 times for Oct-2012 and 5 times for Feb-2012.
 - Restricting IATs to > 60 minutes decreases accuracy.

Limitations of a Graph Mining Approach

- Cannot infer location for IPs with no neighbors.
- Use other info – e.g., site visits; subnet info, etc.
- Cannot infer location for IPs with no known neighbors.
- Use collective classification.
Related Work [Wong et al. NSDI 2007]

- Locate IPs by
 - representing node positions through regions,
 - expressing constraints as areas, and
 - computing locations by solving a system of geometric constraints
- Relies on pings to estimate the round-trip time between two IPs

Related Work [Wang et al. NSDI 2011]

- A client-independent geo-location system
- Like [Wong et al. NSDI 2007] relies on pings to estimate the round-trip time between two IPs
- Also relies on landmarks, which are collected manually

Recap & Open Problems

- Graph mining on just the structure of an IP×IP movement graph to infer locations, in terms of CBGs, for hashed public IP addresses produces an accuracy of ~75%
- Results are impressive since estimating the correct CBG is out of 212K possibilities
- Open problems
 - Inference on truncated IP addresses
 - Constrained collective classification

MINING DATA FROM MOBILE DEVICES

Applications: Location, Ads, Privacy

Spiros Papadimitriou, Tina Eliassi-Rad
{spiros.papadimitriou, tina.eliassi}@rutgers.edu

License

These slides are made available under a Creative Commons Attribution-ShareAlike license (CC BY-SA 3.0):
http://creativecommons.org/licenses/by-sa/3.0/

You can share and remix this work, provided that you keep the attribution to the original authors intact, and that, if you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

© 2013 Spiros Papadimitriou, Tina Eliassi-Rad