

Northeastern University Network Science Institute

MINING SMARTPHONE MOBILITY DATA: ALGORITHMS & APPLICATIONS TO LBSNS & MOBILE ADVERTISING

Tina Eliassi-Rad

<u>tina@eliassi.org</u>

Richard A. Becker, Ramon Caceres, Karrie Hanson, Sibren Isaacman, Ji Meng Loh, Margarel Martonosi, James Rowland, Simon Urbanek, Alexander Varshavsky, Chris Volimsky: <u>Human</u> mobility.characterization from cellular network data. Commun. ACM 56(1): 74-82 (2013).

Human mobility at the individual level (predictive; long-term; GPS)

- "Where are you going to be 285 days from now at 2PM?"
 FarOut
- Identifies periodicity via Fourier analysis (mapping time to frequency)
- Uses PCA for pattern extraction
- Utilizes PCA-based classification
- · Performance continuous rep.: 1 km off; baseline 2.5km off
- Performance discrete rep: 80% accuracy up to 80 weeks into the future; baseline ${\sim}60\%$

Adam Sadilek & John Krumm: Far Out: Predicting Long-Term Human Mobility. AAAI 2012.

Human mobility at the individual level (predictive; long-term; GPS)

- Data: 32K days worth of GPS data across 703 subjects ($^{\prime\!2}_{2}$ people; $^{\prime\!2}_{2}$ cars)
- High variance in area across subjects
- From 30 to more than 10⁸ km²
- Surface area of earth = 5.2 × 10⁸ km²
- Number of contiguous days = 7 to 1247
 - μ = 45.9; σ = 117.8
- Captures both continuous (raw GPS) and discretized (triangular cells) data
- · Each subject has a matrix D, where each row is a day.

 PLOS One 9(3):e92196. March 2014.
 J. Toole, C. Herrera-Yaque, C.M. Schneider, M.C. Gonzalez. <u>Coupling Human Mobility and Social Ties</u>. In arXiv:1502.00690v1, February 2015.

29

netsi

Northeastern University Network Science Institute

MINING SMARTPHONE MOBILITY DATA: ALGORITHMS & APPLICATIONS TO LBSNS & MOBILE ADVERTISING

Tina Eliassi-Rad

© 2013 Spiros Papadimitriou, Tina Eliassi-Rad

Northeastern University Network Science Institute

MINING SMARTPHONE MOBILITY DATA: ALGORITHMS & APPLICATIONS TO LBSNS & MOBILE ADVERTISING

Tina Eliassi-Rad

tina@eliassi.org

MINING SMARTPHONE MOBILITY DATA

Applications: Location, Ads, Privacy

Mobile Real-Time Bidding (RTB) Ad Ecosystem doi nenX. adform lucidmedia Admeld MediaMath DIGILANT RICKMEDI **RIGHT**MEDIA **PubMatic** adsmobi. VTRIGGIT 63 rubicon G FLURRY **∞rocketfuel** {Fiksu} Prospect mobelia pu νίνλκι 📩 ADTECH keAd DataXU ADECN smaato appnexus acuity adcloud ZENOVIA AdMarvel etradedesk tapit! × I S H JESK [X+1] adtabroker mopub * 24/7 Jumptop Accuen mob E R S BrightRoll VuMor burstly adfonic 🜔 DRAFTFCB AdlQuity Obluekai exelate adacado bizo 🔞 1 AdReady adsafe Tad Viz. quantcast neustar A CEVIDON

Census Block Groups (CBGs) Assumption CBGs comprise location information fine-grained enough for useful hyper-local ad targeting, yet coarse-grained enough to avoid major privacy concerns. Why is this reasonable? Covers a contiguous area Never crosses state or county boundaries Contains between 600 and 3,000 people US is divided into ~212K CBGs US is divided into ~8.2M CBs US is divided into ~8.2M CBs US is divided into 43K zip codes

- Balakrishnan et al. (IMC 2009) examined properties of cell-phone IP addresses
- Mobile IPs are ephemeral and their addresses are itinerant
- Example: An individual cell phone can report different IP addresses to various servers within a short time-period

Answers to IP \rightarrow Location queries provided by 7 geo-location services; the actual cell phone is in Mountain View, CA.

M. Balakrishnan, I. Mohomed, and V. Ramasubramanian. Where's that phone? Geolocating IP addresses on 3G networks. In IMC, pages 294–300, 2009.

Hyperlocal: A Graph Mining Solution*

- 1. Classify IPs as mobile vs. non-mobile
- 2. Construct a movement graph with mobile and non-mobile IP nodes
- 3. Use a local relational classifier on each unknown node to infer latitude and longitude
- Assign Census Block Group (CBG) ID to the inferred latitude and longitude using a k-nearest neighbor approach

* http://eliassi.org/ESM2013TR.pdf

250

tside

National classified n-mobile

Recap of Hyperlocal

- 1. Classify IPs as mobile vs. non-mobile
- 2. Construct a movement graph with mobile and non-mobile IP nodes
- 3. Use a local relational classifier on each unknown node to infer latitude and longitude
- Assign Census Block Group (CBG) ID to the inferred latitude and longitude using a *k*-nearest neighbor approach

* http://eliassi.org/ESM2013TR.pdf

19

21

Experiments

- Experiments are divided into nine combinations of infer location for X using Y
- Values for X are 'all IPs', 'mobile IPs', and 'nonmobile IPs'
- Values for Y are 'all neighbors', 'mobile neighbors', and 'non-mobile neighbors'
- Measure accuracy by checking the predicted CBG ID vs. the actual CBG ID of an IP

Implementation & Runtime

· Hardware & OS: Macbook Pro with

- CPU 2.66 GHz Intel Core i7
- RAM 8 GB DDR3
- hard drive 500 GB SSD
- OS X 10.8
- · Language: Python
- Supporting Software: NetworkX & MongoDB
- Runtime: On average 1.2 milliseconds to process each RTB request

Data Name	Collection Date	# RTB Requests with Valid US	% RTB Requests without	% RTB Requests from
Oct-2012	Mon 10/01/2012	44.1M	36.5%	57.3%
Feb-2013	Wed 02/06/2013	21.6M	56.7%	47.7%
From Oct-	2012 to Feb	-2013		

All IPs are hashed public IP addresses.

1 • 1	# of movements whose IP endp	oints are fron	n the same SSP
iomophily =	total # of mo	ovements	
	Homophily	Oct-2012	Feb-2013
	All movements	96.5%	90.8%
Mobi	le to mobile movements	98.6%	99.2%
Non-mobi	Non-mobile to non-mobile movements		78.1%
There is a c	considerable homophily in the	e IP×IP mov	ement graph

29							
es)	nMov	l(nun	vvRN	nIAT) vs. v	N(mi	wvRl	Core Results:
ile ions eb-2013	% Mob in Predic Oct-2012 F	er of tions Feb-2013	Numb Predic Oct-2012	Accuracy wvRN(numMoves) Oct-2012 Feb-2013	uracy (minIAT) Feb-2013	Accu wvRN(r Oct-2012	Infer location for all IPs
3.8%	91.0% 8	328,015	1,189,679	69.7 69.3	70.8	71.6	using all neighbors
7.4%	93.2% 8	278,674	1,077,644	72.6 73.5	74.8	74.4	using mobile neighbors
2.1%	68.7% 6	40,777	98,338	51.7 57.3	57.7	51.9	using non-mobile neighbors
-							Infer location for mobile IPs
00%	100% 1	274,900	1,082,566	72.3 73.6	75.0	74.2	using all neighbors
00%	100% 1	243,630	1,004,601	74.7 77.9	79.1	76.6	using mobile neighbors
)0%	100% 1	25,323	67,553	50.2 54.5	54.7	50.4	using non-mobile neighbors
							Infer location for non-mobile IPs
%	0% 0	53,115	107,113	44.0 46.8	49.0	45.5	using all neighbors
36	0% 0	35,044	73,043	42.5 43.0	45.1	44.0	using mobile neighbors
36	0% 0	15,454	30,785	55.0 62.0	62.7	55.4	using non-mobile neighbors
	os o os o os o	53,115 35,044 15,454	107,113 73,043 30,785	44.0 46.8 42.5 43.0 55.0 62.0 thods are no	49.0 45.1 62.7	45.5 44.0 55.4 en the	using all neighbors using mobile neighbors using non-mobile neighbors • Differences betwe

 Number of predictions varies depending on the particular inference and the neighbor types used in the inference process

IATs on movement edges are correlated with distances

Shorter IAT, shorter distance

- For IPs with only one known neighbor, restricting IAT to \leq 60 minutes
- Improves accuracy by an average of 12% on Oct-2012 and 23% on Feb-2013 data
- Reduces the number of predictions by an average of 4 times for Oct-2012 and 5 times for Feb-2012
- Restricting IATs to > 60 minutes decrease accuracy

Limitations of a Graph Mining Approach

- · Cannot infer location for IPs with no neighbors
- Use other info e.g., site visits; subnet info, etc.
- · Cannot infer location for IPs with no known neighbors
- · Use collective classification.

Northeastern University Network Science Institute

MINING SMARTPHONE MOBILITY DATA: ALGORITHMS & APPLICATIONS TO LBSNS & MOBILE ADVERTISING

37

Tina Eliassi-Rad

<u>tina@eliassi.org</u>

