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Context includes…
• Location/Local

• What resources are nearby?

• Where are you?

• Social

• Who are you with?

• Activity

• What are you doing?
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Work in human mobility Human mobility at the individual level 
(descriptive)
• Human trajectories are not random!
• They have high degree of temporal and spatial regularity
• Individual humans follow simple reproducible patterns

• Exploration + preferential return

• Impact: epidemic 
prevention, 
emergency 
response, 
urban planning, ...
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Marta Gonzalez, Cesar Hidalgo, Albert-Laszlo Barabasi: Understanding
individual human mobility patterns. Nature 453, 779-782, 2008.
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Human mobility at the aggregate level 
(descriptive)
• Billions of anonymized Call Detail Records (CDRs) from a cellular network 
• Characterized daily travel, carbon emissions, number of workers and event 

goers, and traffic volumes of hundreds of thousands of people

9

Richard A. Becker, Ramon Caceres, Karrie Hanson, Sibren Isaacman, Ji Meng Loh, Margaret 
Martonosi, James Rowland, Simon Urbanek, Alexander Varshavsky, Chris Volinsky: Human 
mobility characterization from cellular network data. Commun. ACM 56(1): 74-82 (2013).

78    COMMUNICATIONS OF THE ACM    |   JANUARY 2013  |   VOL.  56  |   NO.  1

contributed articles

By analyzing similar datasets from 
different time periods, we made ad-
ditional spatial and temporal com-
parisons between the daily ranges of 
various populations. For example, 
people throughout the LA region travel 
farther on a typical day than people 
throughout the NY area. In contrast, 
the longest trips taken by residents 
of Manhattan are much longer than 
those taken by residents of central Los 
Angeles. Furthermore, people in both 
the LA and NY regions tend to travel 
shorter distances in the winter months 
than in the summer months, with the 
effect being more pronounced in NY. 
For a more complete description of 
our daily range results, see Isaacman 
et al.13 and Isaacman et al.14

Carbon Footprints 
Evaluating the environmental impact 
of human travel is of urgent interest to 
society at large. A person’s commute 
between home and work can account 
for a significant portion of his or her 
overall carbon footprint. We can es-
timate the carbon emissions due to 
these commutes by combining our 
datasets of cellphone locations with a 
U.S. Census dataset on mode of trans-
port to work (such as automobile, bus, 
and train)24 and a table of carbon emis-
sions by mode of transport.4 

We devised an algorithm that uses 
CDRs to identify important places in 
people’s lives, defined as places a per-
son visits frequently or spends a lot of 
time. We further identified the likely 
home and work locations from among 
these important places, then calculated 
the home-to-work commute distance. 
Our approach, described in more detail 
and validated in Isaacman et al.,12 uses a 
series of clustering and regression steps 
to accomplish these tasks. We found 
our commute-distance estimates were 
within one mile of the ground-truth dis-
tances provided by volunteers. 

We then applied this approach to 
our large CDR datasets for the LA, SF, 
and NY metropolitan areas described 
earlier and computed the distribution 
of commute distances across the popu-
lation of each ZIP code in our regions 
of interest. We found that our esti-
mates were within one mile of the aver-
age commute distances for these same 
regions as published by the U.S. Bureau 
of Transportation Statistics.23 

Figure 2. Median carbon emissions per home-to-work commute of cellphone users living in 
the LA, SF, and NY metropolitan areas. 

(a)

(b)

(c)

Greener ZIP codes denote smaller carbon footprints, ranging through yellow, orange, red, and purple as 
footprints grow. All these maps use the same geographic and carbon scales; emissions are scaled linearly. 
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Finally, we joined our distributions 
of commute distances with the pub-
licly available distributions of modes 
of transport per ZIP code and of car-
bon emissions per mode of transport 
per passenger. Figure 2 shows our re-
sults in the form of heat maps, where 
color corresponds to the median car-
bon emission per commute across the 
people in each ZIP code. Colors are or-
dered so greener ZIP codes correspond 
to lower carbon emissions, with yel-
low, orange, red, and purple ZIP codes 
showing increasing emissions. 

In the NY area, increasing distance 
from Manhattan correlates with an in-
creasing carbon footprint; in contrast, 
LA is more uniform throughout, except 
for parts of Antelope Valley (northeast 
portion of the map) separated from 
downtown LA by a mountain range 
drivers must go around. The results for 
SF are between those for NY and LA. 

These patterns match well with gen-
erally understood movement patterns 
in each city. Popular knowledge indi-
cates that in NY, a great many people 
commute into Manhattan, while in 
LA, there is no single concentration of 
jobs. SF has at least two major job cen-
ters, one focused in the city of San Fran-
cisco proper, another in Silicon Valley 
approximately 40 miles to the south. 
Thus, unlike NY, SF has more than one 
strong jobs focus, but unlike LA, it has 
some clear areas of jobs focus. 

Beyond identifying patterns of car-
bon emissions, we also compared raw 
carbon values. For instance, though 
difficult to see in Figure 2, Manhattan 
ZIP codes have the smallest carbon 
footprints of all ZIP codes studied, 
presumably due to the nearness to 
work of many people’s homes, as well 
as to an extensive public transporta-
tion infrastructure. 

Laborshed and Paradeshed 
City and transportation planners are 
interested in knowing the home loca-
tions of people who work in and visit 
their city. The information is useful 
in, say, forecasting road-traffic vol-
ume during morning and evening rush 
hours. The set of residential areas that 
contribute workers to a city is known as 
the city’s laborshed. 

To study an example laborshed, we 
captured all transactions carried by the 
35 cell towers located within five miles 

of the center of Morristown, NJ, a sub-
urban city with approximately 20,000 
residents. These 35 towers house ap-
proximately 300 antennas pointed in 
various directions and supporting vari-
ous radio technologies and frequen-
cies. Our goal was to capture cellular 
traffic in and around the town. Choos-
ing the five-mile radius allowed us to 
cover both Morristown proper and its 
neighboring areas. We obtained ano-
nymized CDRs for 60 consecutive days, 
March 1 to April 29, 2011, thus collect-
ing more than 17 million voice CDRs 
and 39 million text CDRs for more than 
472,000 unique phones. 

We identified Morristown’s labor-
shed from the CDRs as follows: We 
classified as Morristown workers those 
cellphone users with significant activ-
ity inside Morristown during business 
hours (9 a.m. to 5 p.m., Monday to Fri-
day). We then used billing ZIP codes to 
identify their places of residence. This 
method produced counts of Morris-
town workers by residential ZIP code. 

We validated our results by compar-
ing them with data from the 2000 U.S. 
Census, confirming that the number 
of workers we attributed to each ZIP 
code was strongly correlated with the 
number of workers in the same ZIP 

code as published in the “Journey to 
Work” tables of the 2000 U.S. Census 
Transportation Planning Package.24 
Our analysis and validation method-
ology are described in more detail in 
Becker et al.2 

Figure 3 is a geographic representa-
tion of Morristown’s laborshed, with 
darker colors indicating the home ar-
eas of larger numbers of Morristown 
workers. Interestingly, there seem to 
be many more workers coming from 
the area immediately north of Morris-
town than from the south. These two 
areas have similar population densi-
ties, so the difference may be related 
to geography, demographics, or trans-
portation infrastructure. Furthermore, 
though population density increases 
dramatically to the east (as one gets 
closer to Manhattan), we see almost as 
many workers coming from the west, 
perhaps because Morristown is a re-
gional center of commerce. However, 
there do seem to be workers making 
long “reverse commutes” from areas 
of New Jersey close to Manhattan. All 
these facts could be useful to policy-
makers deciding on future municipal 
and regional mass-transit investments. 

Our methodology allows us to es-
timate the flow of people in and out 

Figure 3. Laborshed of Morristown, NJ; the red dot denotes the city center. 

Contour lines divide regions of different concentrations of workers’ homes, with workers identified as 
those who use their cellphones in Morristown during weekday business hours. Most workers are from 
nearby areas, but some are from as far as 40 miles away in Manhattan. 

Human mobility (descriptive)
• M. Kim, D. Kotz, S. Kim: Extracting a mobility model from 

real user traces. In InfoCom 2006:1-13

• K. Lee, S. Hong, S. Kim, I. Rhee, S. Chong: Slaw: A new 
mobility model for human walks. In InfoCom 2009, 855-863

• Z. Li, B. Ding, J. Han, R. Kays, P. Nye: Mining periodic 
behaviors for moving objects. In KDD 2010, 1099-1108

• M. Kim, D. Kotz, D: Identifying unusual days. Journal of 
Computing Science and Engineering 5(1), 2011:71-84

• …
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Work in human mobility Human mobility at the individual level 
(predictive; short-term; GPS)
• “Where are you going to be in the next hour?”

• Successful techniques: hidden Markov models, random walk based 
formalisms

• Performance around 3-5 km off; classification accuracy low 90%
• Learning from GPS alone

• D. Ashbrook, T. Starner: Using GPS to learn significant locations and 
predict movement across multiple users. Personal Ubiquitous Comput. 7, 
2003:275-286.

• L. Liao, D. Fox, H. Kautz: Location-based activity recognition using 
relational Markov networks. In IJCAI 2005.

• J. Krumm, E. Horvitz: Predestination: Inferring destinations from partial 
trajectories. In UbiComp 2006: 243-260.

• B. Ziebart, A. Maas, A. Dey, J. Bagnell: Navigate like a cabbie: 
Probabilistic reasoning from observed context-aware behavior. In 
UbiComp 2008:322-331.

• …
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Human mobility at the individual level 
(predictive; long-term; GPS)
• “Where are you going to be 285 days from now at 2PM?” 
• FarOut

• Identifies periodicity via Fourier analysis (mapping time to 
frequency)

• Uses PCA for pattern extraction
• Utilizes PCA-based classification

• Performance continuous rep.: 1 km off; baseline 2.5km off
• Performance discrete rep: 80% accuracy up to 80 weeks 

into the future; baseline ~60%

Adam Sadilek & John Krumm: Far Out: Predicting Long-Term Human Mobility. AAAI 2012.
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Human mobility at the individual level 
(predictive; long-term; GPS)
• Data: 32K days worth of GPS data across 703 subjects 

(½ people; ½ cars)
• High variance in area across subjects

• From 30 to more than 108 km2

• Surface area of earth = 5.2 × 108 km2

• Number of contiguous days =  7 to 1247
• μ = 45.9; σ = 117.8

• Captures both continuous (raw GPS) and discretized 
(triangular cells) data 

• Each subject has a matrix D, where each row is a day.

14

Human mobility at the individual level 
(predictive; long-term; GPS)
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Figure 3: Our continuous vector representation of a day d consists
of the median latitude and longitude for each hour of the day (00:00
through 23:59), binary encoding of the day of week, and a binary
feature signifying whether a national holiday falls on d.
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Figure 4: Our cell-based vector representation of a day d encodes
the probability distribution over dominant cells conditioned on the
time within d, and the same day-of-week and holiday information
as the continuous representation (last 8 elements).

time of day, and day type, respectively. ⌦C is the set of all
cells.

We construct a feature vector for each day from this prob-
ability distribution as shown in Fig. 4, where the first 11 el-
ements model the occupancy probability for the 11 discrete
places between 00:00 and 00:59 of the day, the next 11 ele-
ments capture 01:00 through 01:59, etc. The final 8 elements
are identical to those in the continuous representation. The
discretized representation sacrifices the potential precision
of the continuous representation for a richer representation
of uncertainty. It does not constrain the subject’s location to
a single location or cell, but instead represents the fact that
the subject could be in one of several cells with some uncer-
tainty for each one.

The decision to divide the data into 24-hour segments
is not arbitrary. Applying DFT to the raw GPS data as de-
scribed above shows that most of the energy is concentrated
in periods shorter or equal to 24 hours.

Now we turn our attention to the eigenanalysis of the sub-
jects’ location, which provides further insights into the data.
Each subject is represented by a matrix D, where each row
is a day (either in the continuous or the cell form). Prior to
computing PCA, we apply Mercator cylindrical projection
on the GPS data and normalize each column of observations
by subtracting out its mean µ and dividing by its standard
deviation �. Normalizing with the mean and standard devia-
tion scales the data so values in each column are in approxi-
mately the same range, which in turn prevents any columns
from dominating the principal components.

Applying SVD, we effectively find a set of eigenvectors of
D’s covariance matrix, which we call eigendays (Fig. 5). A
few top eigendays with the largest eigenvalues induce a sub-
space, onto which a day can be projected, and that captures
most of the variance in the data. For virtually all subjects, ten
eigendays are enough to reconstruct their entire location log
with more than 90% accuracy. In other words, we can accu-
rately compress an arbitrary day d into only n ! |d| weights
w1, . . . , wn that induce a weighted sum over a common set

of ten most dominant eigendays Ei:

d –
«˜

nÿ

i“1

wiEi

¸
` µ

�
diagp�q. (3)

This applies to both continuous and discretized data. The
reason for this is that human mobility is relatively regular,
and there is a large amount of redundancy in the raw repre-
sentation of people’s location. Note that unlike most other
approaches, such as Markov models, PCA captures long-
term correlations in the data. In our case, this means patterns
in location over an entire day, as well as joint correlations
among additional attributes (day of week, holiday) and the
locations.

Our eigenanalysis shows that there are strong correlations
among a subject’s latitudes and longitudes over time, and
also correlations between other features, such as the day-
of-week, and raw location. Let’s take eigenday #2 (E2) in
Fig. 5 as an example. From the last 8 elements, we see that
PCA automatically grouped holidays, weekends, and Tues-
days within this eigenday. The location pattern for days that
fit these criteria is shown in the first 48 elements. In particu-
lar, E2 makes it evident that this person spends her evenings
and nights (from 16:00 to 24:00) at a particular constant lo-
cation in the North-West “corner” of her data, which turns
out to be her home.

The last 8 elements of each eigenday can be viewed as
indicators that show how strongly the location patterns in
the rest of the corresponding eigenday exhibit themselves on
a given day-of-week ˆ holiday combination. For instance,
E3 is dominant on Saturdays, E7 on Fridays, and E10 on
Tuesdays that are not holidays (compare with E2).

Fig. 6 shows the top ten eigendays for the cell-based rep-
resentation. Now we see patterns in terms of probability dis-
tributions over significant cells. For instance, this subject ex-
hibits a strong “baseline” behavior (E1) on all days—and es-
pecially nonworking days—except for Tuesdays, which are
captured in E2. Note that the complex patterns in cell oc-
cupancy as well as the associated day types can be directly
read off the eigendays.

Our eigenday decomposition is also useful for detec-
tion of anomalous behavior. Given a set of eigendays and
their typical weights computed from training data, we can
compute how much a new day deviates from the subspace
formed by the historical eigendays. The larger the deviation,
the more atypical the day is. We leave this opportunity for
future work.

So far we have been focusing on the descriptive aspect
of our models—what types of patterns they extract and how
can we interpret them. Now we turn to the predictive power
of Far Out.

Predictive Models
We consider three general types of models for long-term
location prediction. Each type works with both continuous
(raw GPS) as well as discretized (triangular cells) data, and
all our models are directly applied to both types of data
without any modification of the learning process. Further-
more, while we experiment with two observed features (day

Adam Sadilek & John Krumm: Far Out: Predicting Long-Term Human Mobility. AAAI 2012.

Human mobility at the individual level 
(predictive; long-term but < 24 hours)
• N. Eagle and A. Pentland: Eigenbehaviors: Identifying structure in 

routine. Behavioral Ecology & Sociobiology 63(7), 2009:1057-1066

• Predictions up to 12 hours into the future

• Class labels: {Home, Elsewhere, Work, No Signal, Off}. 

• PCA-based classification

• 79% accuracy 
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Context includes…
• Location/Local

• What resources are nearby?

• Where are you?

• Social

• Who are you with?

• Activity

• What are you doing?
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Location Social

Activity
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• Long distance movements are 
influenced by ties in the social 
network.

• This is not true for short-range 
movements or temporally periodic 
movements.
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• Social ties affect human mobility.
• Human mobility affects social ties.

Predicting the next check-in on a LBSN
• Predicting the next FourSquare

check-in 
• A supervised approach

• M5 tree and linear regression
• Tried out a bunch of features

• User mobility features
• Global mobility features
• Temporal features 

• How well?
• Much lower accuracies 

compared to GPS
• Much harder task

21

Anastasios Noulas, Salvatore Scellato, Neal Lathia, 
Cecilia Mascolo: Mining User Mobility Features for 
Next Place Prediction in Location-Based Services. 
ICDM 2012: 1038-1043.

The Average Percentile Rank (APR) is obtained by averaging
across all user check-in predictions: this measure captures
the average normalized position of the correct instance in the
ranked list of instances. We also use prediction accuracy to
assess the performance when using different prediction list
sizes N . In this case, we successfully predict the next check-
in venue if we rank a venue in the top-N places. Average
accuracy is the fraction of successful instances over the total
number of prediction tasks, which we note as Accuracy@N.

Feature based venue prediction
APR Results: The APR results for all features are

presented in Table I. From the class of User Mobility features,
we can distinguish the Categorical Preference feature which
achieves a score 0.84, which is considerably higher than
the Historical Visits (APR = 0.68) and Social Filtering
(APR = 0.61). This provides an indication that the types
of places users tend to visit (cinema, nightclub, coffee shops
etc.) can be highly informative about user mobility preferences
and could be employed in mobile applications such as place
recommendation systems. With respect to features mined ex-
ploiting Global Mobility patterns of Foursquare users, Place
Popularity which ranks venues according to the number of
past check-ins is the most promising predictor with an APR

score that averages 0.86. The Geographic Distance and Rank
Distance attain an average score 0.78, highlighting that spatial
distance is an important factor in the way users decide which
venue to visit next. Continuing in the same class of features,
the Activity Transition and Place Transition features achieve
lower scores with APR = 0.60, remaining though higher than
the Random Baseline which would achieve 0.50. We close
the APR score analysis by looking at the performance of
features that exploit Temporal Information about the check-
in patterns of Foursquare users. The Place Hour feature, which
ranks target venues according to the frequency of visits by any
user observed in the past at the current check-in hour, achieves
the highest score, 0.79. The Place Day ranking, which instead
ranks venues by the past number of visits at the day of the
current user check-in, follows closely with an APR = 0.76,
perhaps due to its lower temporal specificity (day of week
instead of hour of day). Nonetheless, both features signify
that temporal activity around venues constitutes a source of
high quality signal in the venue prediction task. Finally the
Category Hour and Category Day features trail in performance
with scores 0.56 and 0.57 respectively.

The Effect of Prediction List Size: The APR scores
denote how well, in general, a prediction feature ranks the
next visited venue amongst all candidate venues L. However,
in the context of a real mobile application where a finite set of
places may be recommended to a user, due to interface or other
constraints, one would be interested to examine how prediction
approaches perform when the size of the prediction list N is
limited. We have evaluated all algorithms across various top-N
lengths using the Accuracy@N metric. We show the full set of
results in Figure 2 and we report the results of Accuracy@10
and Accuracy@50 in Table I. The principal observation is that
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Fig. 2. Feature Predictability: Mean Accuracy for all features when they are
being tested on an individual basis for different prediction list sizes N.

features who rank low in APR can potentially demonstrate
good performance in accuracy terms, in contrast to the results
presented in the previous paragraph,. Overall, the results in
Figure 2 suggest features tailored specifically to User Mo-
bility patterns, such as Historical Visits and Social Filtering
dominate in accuracy for list sizes smaller than N = 60. In
particular, Historical Visits persist over larger list sizes, up
to N = 100. We note that both features had relatively low
APR scores. On the other hand, features that harvest upon
Global Mobility information, such as Place Popularity or
Geographic Distance fail to achieve high accuracy scores for
small N values. This duality in the performance of the various
predictors can be explained by the fact that some features
can predict exactly the next place a user is going to when,
for instance, the user returns to a previously visited place or
visits places that their friends go to. Nevertheless, the same
features fail to rank appropriately the thousands of previously
unseen venues in the city, thus exhibiting a low APR score.
We shall see that those heterogeneities in feature performance
will be dissected when we will combine them in a supervised
framework.

Predictability Over Time: We have demonstrated the
overall performance of various features in light of two different
metrics, APR and Accuracy@N . Another interesting aspect
to consider is how well the different prediction strategies may
perform at different temporal instants. Figure 3 compares the
performance of the various features by showing the temporal
evolution of the APR score over the week. Overall, the
effectiveness of each feature over time changes: predictions
are more accurate at noon and less accurate in the evening.
This suggests that people might be more habitual during the
day and more likely to alter their patterns and try something
new in the evenings. Interestingly, in the cases of Geographic
Distance and Rank Distance performance is inverted: users
are more likely to cover shorter distances at night between
consecutive check-ins. Further, the variance between the min-
ima and maxima in the temporal results is more prominent for
some features. More specifically, algorithms such as Historical
Visits and Place Transition drop significantly over weekends,
whereas Categorical Preference, Place Popularity and the
distance based features are more stable.
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Fig. 3. Feature Weekly Predictability: Average Percentile Rank for all features for different hours of a week. Strong daily periodicities are also observed:
notice the yellow circles and red squares which correspond to noon and dinner times respectively.

V. SUPERVISED LEARNING FOR VENUE PREDICTION

In this section, we combine each of the individual predic-
tion features presented previously into a supervised learning
framework. Our aim is to exploit the union of individual
features in order to improve predictions, assuming that user
mobility in Foursquare is driven by multitude of factors acting
synchronously. To predict the next check-in venue of a user we
train supervised models assuming knowledge up to prediction
time t

0. For every check-in that took place before t

0, we
build a training example x which encodes the values of
the features of the visited venue (e.g., popularity, distance
from previous venue, temporal activity scores) and whose
label y is positive. Then, we retrieve a negative labeled input
by sampling at random across all other places in the city.
Essentially, we are aiming to teach the model what the crucial
characteristics are that would allow to differentiate places
that attract user check-ins from those which would not. This
method of training a model by providing feedback in the form
of user preference has been established in the past [4] and
corresponds to an effective reduction of the ranking problem to
a binary classification task. Finally, we consider two different
supervised models to learn how feature vectors x correspond
to positive and negative labels: linear ridge regression and M5
decision trees [8].

Results: We are now presenting the prediction results
obtained when we train and test the two supervised learning
models. The M5 trees have the best performance across all
models, with an APR of 0.94 and a clear margin compared to
all single feature prediction strategies that achieve at best 0.86
when venues are ranked according to Place Popularity. On
the other hand, the linear regression model achieves an APR
score equal to 0.81 which ranks it lower than the popularity
and categorical preference features.

If we consider the performance of the models in terms
of prediction accuracy (see Figure 4), we can notice that
M5 model trees dominate with Accuracy@10 equal to 0.31
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Fig. 4. Average accuracy for the supervised learning algorithms (linear
regression and M5 model trees) for different recommendation list sizes.

and Accuracy@50 equal to 0.51. In the latter case, the next
place visited by the user is on average ranked at the top-
50 positions of the prediction list, which is a remarkable
performance if one considers the multitude of places being
ranked in a city. Compared to the Historical Visits feature
that does best in terms of accuracy, M5 model trees present
constantly better performance: Historical Visits offer good
accuracy scores which however reach an upper bound when
prediction list size N = 10, whereas for larger N values
no improvement is observed. As the reader may notice by
inspecting Figure 4, M5 model trees accuracy performance
ceases to increase rapidly only when N = 100. That means
that their predictive power is not biased by a small set of
candidate venues as in the cases of Historical Visits and Social
Filtering. The linear model presents similar trends in terms of
how its accuracy scores improve relative to list size N but
it fails to achieve high absolute scores, although it still does
better than Historical Visits for N bigger than 50. Overall,
M5 model trees attain peak performance both in APR and
Accuracy terms, showing not only that that a supervised
approach that combines multiple features is more effective,
but also the fact that this combination is more effective in a

Spatial search on a LBSN (using all 
available data, GPS, check-ins, etc)
• Best models of venue search are spatiotemporal models 

using the mixture of Gaussians, the timeliness feature, as 
well as popularity combined as a linear sum of log-
likelihoods

22

• B. Shaw, J. Shea, S. Sinha, A. Hogue. 
Learning to Rank for Spatiotemporal 
Search. WSDM 2013: 717-726.

Figure 7: A scatterplot showing a sample of the
143 thousand check-ins that have occurred in the
few blocks near the corner of Bleecker and Jones
St. in Manhattan. Each check-in is color-coded
by the venue to which it belongs. We see that al-
though some popular venues can easily be distin-
guished from others nearby, there is a substantial
overlap of check-ins in some areas which makes dis-
crimination difficult.

ber of Gaussians was limited between 1 and 5 and selected
via cross-validation. A venue is then predicted by finding
the venue which maximizes the probability under this spa-
tial distribution. The full spatiotemporal model uses the
mixture of Gaussians, the timeliness feature, as well as pop-
ularity combined as a linear sum of log-likelihoods.

Table 2 shows the test accuracy of the 3 different models.
We see that modelling venue shape offers 46% lift over a sim-
ple distance-based algorithm, and incorporating timeliness
and relative popularity yields a 112% lift in performance.

3.2 Learning to Rank
In this section, we describe our experiments to determine

the optimal features and training procedure for our search al-
gorithm. Using the methodology discussed in Section 2.3.1,
we collected 38 thousand examples of successful worldwide
venue searches, randomly sampled from the week of 6/24/12,
where a user selected the correct venue from a rank-ordered
list presented to them. Our goal is to create a better ranking
algorithm which ranks the correct venues at a higher posi-
tion. The 38 thousand venue searches are comprised of over
4 million candidate venues and are split 70%/15%/15% into
training, validation, and test sets respectively. The mod-
els for these venues were built using 282 million check-ins,
collected over the 2 years prior to the query date.

We explore a variety of different combinations of features
and models, including linear regression, coordinate ascent,
and LambdaMART [33]. For the coordinate ascent model,
we use domain knowledge to construct explicit cross-products
that capture important non-linearities (such as spatial score
× popularity). The LambdaMART algorithm automatically

Model P@1

Baseline (nearest by distance) 0.130
Spatial Gaussian mixture model 0.193
Spatiotemporal models 0.277

Table 2: Comparison of different models of venues.
We see that using more complex spatial models and
incorporating temporal signals greatly improves the
accuracy of the search algorithm.

Model P@1

Random 0.009
Spatial only 0.201
User history only 0.358
Popularity only 0.143
Linear regression: spatial + temporal 0.230
Linear regression: spatial + temporal + popularity 0.251
Linear regression: all features 0.434
Coordinate ascent: all features w/ nonlinear pairs 0.493
LambdaMART: all features 0.531

Table 3: The precision of various models and sets of
features in ranking venue search results.

captures non-linearites by forming an ensemble of 2000 de-
cision trees. Table 3 summarizes the performance of these
different techniques in terms of precision at 1 on the held-out
test set. The NDCG@5 for our best model is 0.686, and re-
call @5 is 0.822. Figure 9 shows our recall as rank increases.
We see that using our best model, we find the correct result
in one of the top 5 positions in 82% of searches and in the
top 10 positions in 91% of searches.

The results in Table 3 indicate that distance and personal
history are informative features; however their individual
performance is poor when compared to a full model trained
using a combination of many features. We also find that
linear models can perform poorly for ranking when many
features are combined. Carefully constructing non-linear
pairs of features or using a robust non-linear model such
as LambdaMART is crucial for combining many disparate
signals into an accurate model.

3.3 Analysis
To better understand when venue search is difficult we

more closely examine how the performance of our search al-
gorithm degrades based on varying degrees of personal his-
tory, venue density, and reported horizontal accuracy from
the GPS of the mobile device. In Figure 8(a), we see the
performance of the linear model as a function of the number
of nearby venues a user has been to when they perform a
search. Because users are more likely to check into venues
they have visited before, the model performs best when there
are a small number of venues nearby that a user has previ-
ously visited. As the number of nearby venues in the user’s
history increases, this history has less predictive value, and
the accuracy of the model decreases. In Figure 8(b), we see
performance as a function of the number of venues within
a 1km radius of the user’s query. As expected, we observe
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available data, GPS, check-ins, etc)
• Best models of social venue search: LambdaMart with a 

laundry list of features: 
• Spatial score, timeliness, popularity, here now, personal history, 

creator, mayor, friends here now, personal history w/ time of day
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Figure 7: A scatterplot showing a sample of the
143 thousand check-ins that have occurred in the
few blocks near the corner of Bleecker and Jones
St. in Manhattan. Each check-in is color-coded
by the venue to which it belongs. We see that al-
though some popular venues can easily be distin-
guished from others nearby, there is a substantial
overlap of check-ins in some areas which makes dis-
crimination difficult.

ber of Gaussians was limited between 1 and 5 and selected
via cross-validation. A venue is then predicted by finding
the venue which maximizes the probability under this spa-
tial distribution. The full spatiotemporal model uses the
mixture of Gaussians, the timeliness feature, as well as pop-
ularity combined as a linear sum of log-likelihoods.

Table 2 shows the test accuracy of the 3 different models.
We see that modelling venue shape offers 46% lift over a sim-
ple distance-based algorithm, and incorporating timeliness
and relative popularity yields a 112% lift in performance.

3.2 Learning to Rank
In this section, we describe our experiments to determine

the optimal features and training procedure for our search al-
gorithm. Using the methodology discussed in Section 2.3.1,
we collected 38 thousand examples of successful worldwide
venue searches, randomly sampled from the week of 6/24/12,
where a user selected the correct venue from a rank-ordered
list presented to them. Our goal is to create a better ranking
algorithm which ranks the correct venues at a higher posi-
tion. The 38 thousand venue searches are comprised of over
4 million candidate venues and are split 70%/15%/15% into
training, validation, and test sets respectively. The mod-
els for these venues were built using 282 million check-ins,
collected over the 2 years prior to the query date.

We explore a variety of different combinations of features
and models, including linear regression, coordinate ascent,
and LambdaMART [33]. For the coordinate ascent model,
we use domain knowledge to construct explicit cross-products
that capture important non-linearities (such as spatial score
× popularity). The LambdaMART algorithm automatically

Model P@1

Baseline (nearest by distance) 0.130
Spatial Gaussian mixture model 0.193
Spatiotemporal models 0.277

Table 2: Comparison of different models of venues.
We see that using more complex spatial models and
incorporating temporal signals greatly improves the
accuracy of the search algorithm.

Model P@1

Random 0.009
Spatial only 0.201
User history only 0.358
Popularity only 0.143
Linear regression: spatial + temporal 0.230
Linear regression: spatial + temporal + popularity 0.251
Linear regression: all features 0.434
Coordinate ascent: all features w/ nonlinear pairs 0.493
LambdaMART: all features 0.531

Table 3: The precision of various models and sets of
features in ranking venue search results.

captures non-linearites by forming an ensemble of 2000 de-
cision trees. Table 3 summarizes the performance of these
different techniques in terms of precision at 1 on the held-out
test set. The NDCG@5 for our best model is 0.686, and re-
call @5 is 0.822. Figure 9 shows our recall as rank increases.
We see that using our best model, we find the correct result
in one of the top 5 positions in 82% of searches and in the
top 10 positions in 91% of searches.

The results in Table 3 indicate that distance and personal
history are informative features; however their individual
performance is poor when compared to a full model trained
using a combination of many features. We also find that
linear models can perform poorly for ranking when many
features are combined. Carefully constructing non-linear
pairs of features or using a robust non-linear model such
as LambdaMART is crucial for combining many disparate
signals into an accurate model.

3.3 Analysis
To better understand when venue search is difficult we

more closely examine how the performance of our search al-
gorithm degrades based on varying degrees of personal his-
tory, venue density, and reported horizontal accuracy from
the GPS of the mobile device. In Figure 8(a), we see the
performance of the linear model as a function of the number
of nearby venues a user has been to when they perform a
search. Because users are more likely to check into venues
they have visited before, the model performs best when there
are a small number of venues nearby that a user has previ-
ously visited. As the number of nearby venues in the user’s
history increases, this history has less predictive value, and
the accuracy of the model decreases. In Figure 8(b), we see
performance as a function of the number of venues within
a 1km radius of the user’s query. As expected, we observe
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Context includes…
• Location/Local

• What resources are nearby?

• Where are you?

• Social

• Who are you with?

• Activity

• What are you doing?
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Location & Activity
• MobileMiner [Wang et al. SIGMOD 2009]
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Figure 1: The architecture of MobileMiner.

a social network can be constructed using calls between cus-
tomers and the calling frequencies. Communities in the so-
cial network capture the connectivity and similarity among
customers. By considering the properties of the communi-
ties, eÆective market campaign can be designed for targeted
customers. For example, the customers with broad social
connections should be taken care specially.

We emphasize the following points in our demo. First,
we present how we solve the business tasks in mobile com-
munication using novel data mining techniques. Second, we
use MobileMiner on real data to elaborate what can be
done and how the data mining techniques can be integrated
in a business-driven model. Third, we show some examples
of what still cannot be done satisfactorily using the current
data mining techniques, which may motivate future research
and development.

2. TECHNOLOGY AND NOVELTY
Figure 1 shows the architecture of MobileMiner. Cus-

tomer records are collected by the mobile communication
base stations and fed into MobileMiner as data streams,
including customer moving trajectories and calling records.
A base station serves the cell phones in a specific region, and
can detect a mobile customer once she turns on her phone.
Once the records are imported into the system, profile min-
ing is performed to generate user profiles for the upper layer
data mining tasks.

Specifically, in the profile mining part, customers’ moving
profiles or their frequent moving patterns are constructed
based on their moving records continuously. The core of this
task is to mine sequential patterns on data streams, which
is challenging since there can be many customers and the
sliding window can be large. A customer’s moving profile
is formed using the set of closed sequential patterns that
match the customer’s trajectory and the profile is incre-
mentally maintained. We developed a novel algorithm [1]
to mine and incrementally maintain on fast data streams
closed sequential patterns, which are non-redundant repre-
sentation of sequential patterns. An eÆective data structure
is designed to keep close sequential patterns in memory and
various strategies are proposed to prune search space aggres-
sively. Based on the experiments on both real and synthetic
databases, our algorithm outperforms the best existing al-
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Figure 2: A bicluster in 3D (x, y, time).

gorithms by a large margin. The details of the techniques
can be found in [1].

The mobile user segmentation module clusters customers
according to their profiles. The goal is to partition customers
into groups such that the customers in a group are similar
to each other in moving patterns. Importantly, timestamps
should be considered. Since each point in a customer tra-
jectory is associated with a timestamp, two trajectories are
similar only if they are close to each other in time dimen-
sion. The problem is formulated as clustering trajectories
in both space and time. The spatio-temporal patterns of
clusters are very useful for the company to allocate base sta-
tions eÆectively for specific customer groups. Some related
work (e.g., [3]) clusters spatio-temporal patterns in bioin-
formatics. Here, we adapt the algorithm in [2] to group 2-
dimensional trajectories in diÆerent time stamps. The main
idea is to find biclusters with low mean squared residue
through eÆectively iterative search. The mean squared
residue captures the variance of the set of trajectories in
a bicluster over time. For example, Figure 2 shows a cluster
discovered by the algorithm, where the grouped 2D location
trajectories of 13 customers are plotted at 19 consecutive
time points.

In mobile communication business, the social relationship
among customers often plays a significant role in market-
ing. For example, losing some customers with broad social
connections may cause customer churning. A social net-
work among customers is constructed. Each customer is
represented by a node in the network. An edge is drawn to
connect two customers if they call each other over a certain
number of times in the current sliding window. A social
community in the network is a set of nodes such that they
are relatively well connected to each other and much less
connected to the other nodes in the network. Some previ-
ous work (e.g., [4]) discovers communities in a network. In
this application, the connection weights on edges in graphs
should be considered. We extend the algorithm in [5] to
discover communities in the weighted graph in two steps.
First, we generate a core set and then expand the core set
with a±liated customers. The core set is a set of customers
whom are frequently called by other customers. The af-
filiated customers are the customers surrounding the core
with diÆerent layers. We use the calling frequencies as the
weights in the process of finding core customers and ranking
a±liated customers. To control the granularity of the dis-
covering communities, a merging schema is used to merge
similar communities to get coarser results.

Tengjiao Wang, Bishan Yang, Jun Gao, Dongqing Yang, Shiwei Tang, Haoyu Wu, Kedong Liu, Jian Pei: 
MobileMiner: A real world case study of data mining in mobile communication. SIGMOD 2009: 1083-1086
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Location & Social & Activity
• Lots of work analyzing Twitter data in this space
• A 2012 best paper winner is from U. of Rochester
• Flap uses a dynamic Bayesian network per user to predict his/her 

locations given location of friends, time of day, type of day
• Experiments on over 4M 

tweets from users in LA 
and NYC

• It can correctly place a user 
within a 100m radius with up 
to 85% accuracy
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Figure 2: Flaps’s visualization of a sample of geo-
active friends in NYC. Red links between users rep-
resent friendships.

in the upper-right corner. Flap can animate arbitrary seg-
ments of the data at various speeds. Selecting a user displays
additional information such as his profile, time and text of
his recent tweets, and a more detailed map of his current
surroundings.

Now we turn to the third—machine learning—module of
Flap that has two main tasks. First, it is responsible for
learning a model of people’s friendships and subsequently
revealing hidden friendships. And second, it learns models
of users’ mobility and predicts their location at any given
time. We will now discuss these two tasks and our solutions
in turn.

5.1 Friendship Prediction
The goal of friendship prediction is to reconstruct the en-

tire social graph, where vertices represent users and edges
model friendships. We achieve this via an iterative method
that operates over the current graph structure and features
of pairs of vertices. We first describe the features used by our
model of social ties, and then focus on its structure, learning,
and inference. In agreement with prior work, we found that
no single property of a pair of individuals is a good indicator
of the existence or absence of friendship [20, 6]. Therefore,
we combine multiple disparate features—based on text, lo-
cation, and the topology of the underlying friendship graph.

5.1.1 Features
The text similarity coe�cient quantifies the amount of

overlap in the vocabularies of users u and v, and is given by

T (u, v) =
X

w2W (u)\W (v)\S

fu(w)fv(w), (1)

where W (u) is the set of words that appear in user u’s
tweets, S is the set of stop-words (it includes the standard
stop words augmented with words commonly used on Twit-
ter, such as RT, im, and lol), and fu(w) is the frequency of
word w in u’s vocabulary.

Interestingly, in the Twitter domain, the mentions tags
(@) give a clue to user’s friendships. However, in the ex-
periments presented here, we eliminate all user names that
appear in the tweets in order to report results that generalize
to other social networks.

Our co-location feature (C) is based on the observation
that at least some people who are online friends also meet

in the physical world [14]. We make an assumption that
once a user tweets from a location, he or she remains at
that location until they tweet again. Even though people
generally do not tweet from every single place they visit, this
approximate co-location measure still captures how much
time pairs of users tend to spend close to each other. The
co-location score is given by

C(u, v) =
X

`u,`v2L

t(`u, `v)
d(`u, `v)

, (2)

where L is the union of all locations from which users u and
v send messages, t(`u, `v) is the amount of time u spends at
location `u while v is at location `v. In short, we add up
the time overlaps two users spend at their respective loca-
tions and we scale each overlap by the distance between the
locations. Thus, two individuals spending a lot of common
time at nearby places receive a large co-location score, while
people who always tweet from two opposite ends of a city
have a small co-location score. We have implemented an ef-
ficient algorithm that calculates C(u, v) for a pair of users in
time O(n) where n is the minimum number of GPS-tagged
messages created by either user u or v. Note that unlike
previous work (e.g., [7, 1]), our co-location feature is con-
tinuous and does not require discretization, thresholding, or
parameter selection.

As a graph structure feature, we use the meet/min co-
e�cient (M) and its generalized version (ME) defined in
equations 3 and 4 respectively.

M(u, v) =

��N(u) \N(v)
��

min

✓��N(u)
��,
��N(v)

��
◆ (3)

ME(u, v) =

P
n2N(u)\N(v)

pnupnv

min

✓ P
n2N(u)

pnu,
P

n2N(v)

pnv

◆ (4)

N(u) is the set of neighbors of node u and pnu is the prob-
ability of edge (n, u). The standard meet/min coe�cient
counts the number of common neighbors of u and v (this
quantity is equal to the number of triads that the edge (u, v)
would complete, an important measure in structural balance
theory [11]), and scales by the size of the neighborhood of
either u or v, whichever is smaller. Intuitively, M(u, v) ex-
presses how extensive is the overlap between friendlists of
users u and v with respect to the size of the shorter friendlist.
The expectation of the meet/min coe�cient ME calculates
the same quantities but in terms of their expected values
on a graph where each edge is weighted by its probability.
Neither measure depends on the existence or probability of
edge (u, v) itself.

Since the T and C scores are always observed, we use a
regression decision tree to unify them, in a pre-processing
step, into one feature DT (u, v), which is the decision tree’s
prediction given T (u, v) and C(u, v). Thus, we end up with
one feature function for the observed variables (DT ) and
one for the hidden variables (ME).

We have experimented with other features, including the
Jaccard coe�cient, preferential attachment, hypergeometric
coe�cient, and others. However, our work is motivated by
having an e�cient and scalable model. A decision tree-based
feature selection showed that our three measures (T , C, and

• Adam Sadilek, Henry A. Kautz, Jeffrey P. 
Bigham: Finding your friends and following 
them to where you are. WSDM 2012:723-
732 (best paper)

• Adam Sadilek, Henry Kautz, Jeffrey P. 
Bigham: Modeling The Interplay of 
People’s Location, Interactions, and Social 
Ties. IJCAI 2013.
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Ad Targeting on Mobile Devices
• Need reliable location information

• We collected 21.6M RTB requests on Wed 2/6/2013
• The majority of them (57%) did not have location 

information

• Reasons behind the missing location information
1. The RTB system did not forward it
2. The SSP did not forward it
3. The device did not capture it
4. The user did not enable location-based services

31

• RTB: Real-Time Bid
• SSP: Supply Side Provider

Problem Definition
• Accurately infer location information for IPs in RTB 
requests

• What type of location information should we infer?
• Latitude, longitude
• Census Block Groups (CBGs)
• Zip codes
• …

32

privacy-friendly 
location Information

Long T. Le, Tina Eliassi-Rad, Foster Provost, Lauren Moores: 
Hyperlocal: Inferring location of IP addresses in real-time bid 
requests for mobile ads. ACM SIGSPATIAL LBSN 2013: 24-33.

Census Block Groups (CBGs)
• Assumption

• CBGs comprise location information fine-grained enough 
for useful hyper-local ad targeting, yet coarse-grained 
enough to avoid major privacy concerns.

• Why is this reasonable?
• Covers a contiguous area
• Never crosses state or county boundaries 
• Contains between 600 and 3,000 people
• US is divided into ~212K CBGs

33

• US is divided into ~8.2M CBs

• US is divided into 43K zip codes

Geo-locating IP addresses on mobile 
networks is hard
• Balakrishnan et al. 

(IMC 2009) examined 
properties of cell-phone 
IP addresses

• Mobile IPs are ephemeral 
and their addresses are 
itinerant 

• Example: An individual 
cell phone can report 
different IP addresses to 
various servers within a 
short time-period
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Answers to IP → Location queries provided by 
7 geo-location services; the actual cell phone 
is in Mountain View, CA. 
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ABSTRACT
Cell phones connected to high-speed 3G networks constitute
an increasingly important class of clients on the Internet.
From the viewpoint of the servers they connect to, such de-
vices are virtually indistinguishable from conventional end-
hosts. In this study, we examine the IP addresses seen by
Internet servers for cell phone clients and make two obser-
vations. First, individual cell phones can expose di↵erent IP
addresses to servers within time spans of a few minutes, ren-
dering IP-based user identification and blocking inadequate.
Second, cell phone IP addresses do not embed geographical
information at reasonable fidelity, reducing the e↵ectiveness
of commercial geolocation tools used by websites for fraud
detection, server selection and content customization. In ad-
dition to these two observations, we show that application-
level latencies between cell phones and Internet servers can
di↵er greatly depending on the location of the cell phone,
but do not vary much at a given location over short time
spans; as a result, they provide fine-grained location infor-
mation that IPs do not.

Categories and Subject Descriptors
C.2.5 [Computer Systems Organization]: Local and
Wide-Area Networks—Internet ; C.1.3 [Computer Systems
Organization]: Other Architecture Styles—Cellular Archi-
tecture

General Terms
Measurement

1. INTRODUCTION
Smartphones connected to high-speed 3G networks are an

increasingly important class of clients on the Internet. From
the viewpoint of the websites they visit, such devices are vir-
tually indistinguishable from conventional wired end-hosts,
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Figure 1: Answers to IP ! Location queries pro-
vided by seven geolocation services; the actual cell
phone is in Mountain View, CA.

running fully functional browsers that display standard con-
tent with high fidelity. As with any wired host, a cell phone
exposes limited information to Internet servers in the form
of a User-Agent tag and an IP address.

In this paper, we examine the properties of the IP ad-
dresses exposed by cell phones to servers on the Internet;
these IPs typically belong to application and network-level
proxies within the carrier’s network. Websites widely use IP
addresses to identify end-hosts — for example, to prevent re-
peated voting on polls, or to prevent malicious activity. In
addition, they often attempt to geolocate clients using IP ad-
dresses, using commercial services that map IPs to physical
locations. Geolocation enables websites to implement more
sophisticated functionality such as fraud detection, content
customization and proximal server selection. IP-based iden-
tification and geolocation are known to work extremely well
for wired end-hosts despite the prevalence of Network Ad-
dress Translation (NAT) boxes and dynamic IP addresses
[6].

Unfortunately, IP-based geolocation does not work well
for cell phones. The graphic in Figure 1 shows the results of
self-localization queries executed at seven di↵erent geoloca-
tion services by a cell phone in Mountain View, California.
The query results from five of the services are not even lo-
calized to the same US state; later in this paper we’ll see
that the most accurate service shown does not work well
for other locations. In this study, we show that the reasons
for geolocation inaccuracy are two-fold. First, cell phone
IPs are ephemeral, changing rapidly across HTTP requests

Many devices often use the same public IP 
address
• Metwally & Paduano

(KDD 2011) estimated 
the number of users of 
an IP address by keeping 
track of the application-
specific traffic

• The primary goal of their 
work was to combat 
“abusive” traffic 
(such as DDoS attacks, ad click fraud and email spam) 
without violating the user privacy
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users share IPs. This is illustrated by Fig. 1 that shows the
distribution of 10M random IPs (from Google ad click log
files) shared by 26.9M total estimated ad users.

Figure 1: The estimated sizes of 10M random IPs.

Estimating sizes from the log files is not straightforward.
Näıve counting of distinct user identifications, e.g., cookie
IDs or “user agents” (UAs), per IP fails to accurately esti-
mate sizes. Corporate NAT devices usually have the same
UA on all hosts. Similarly, an Internet cafe host is used by
several users sharing the same user ID. Meanwhile, small IPs
can masquerade as large IPs by clearing or farming cookies,
and overwriting UAs in HTTP requests. Therefore, esti-
mating sizes by distinct counting of cookies and UAs may
result in over-estimation or under-estimation. Filtering traf-
fic based on these inaccurate sizes yields high false negatives
and high false positives, respectively.
Instead, this paper proposes using the log files to build

statistical models that are later used for estimating sizes.
However, this approach poses some challenges.

1. The log files do not contain only legitimate traffic. The
existence of abusive traffic entries in these files degrades
the quality of the models and the estimated sizes. To
avoid such quality degradation, the models should be
built only from the traffic of the trusted users1. This
introduces a sampling bias in the traffic used to build
the models. To mitigate this bias later in the estima-
tion phase, only the trusted traffic of each IP2 during
a period, p, is used to estimate its size for p (§ 2.).

2. The sizes of the IPs change due to legitimate reasons,
such as reassignments, flash crowds and business-week
cycles. For an estimation period, p, the log files cannot
be finalized before the end of p. They are then ana-
lyzed to produce estimates after each IP has already
made its activities during p. Hence, estimated sizes
are always lagging behind real-time sizes. Meanwhile,
real-time abuse detection needs the estimates when p
begins. This lag reduces the filtering accuracy when an
IP legitimately changes size (§ 4).

1Trusted users, identified by cookie IDs for example, are
typically those whose activity was rarely tagged as abusive
by any existing filter. If this is the only deployed filter,
trusted users can be alternatively defined as those with some
signature of good traffic, where the definition of good traf-
fic is application-dependent. For combating ad click fraud,
trusted cookies can be defined as those with a relatively
high conversion rate, where conversions are rare but trusted
post-click activities, like purchases from the advertisers.
2Traffic entries tagged by filters are logged in abusive log
files. Both trusted and untrusted traffic entries exist in the
log files. Only untrusted entries exist in the abusive log files.

Given the above challenges, our contributions can be bet-
ter laid down into the following three efforts:

1. building statistical models for size estimation in an au-
tonomous, passive and privacy-preserving way from ag-
gregated log files (§ 3),

2. devising a distributed efficient algorithm that examines
previous size estimates, and produces a predicted size
for each possible IP for a period p before p begins to
mitigate the deleterious effects of lag (§ 4), and

3. setting traffic filtering thresholds based on the sizes
without any manual intervention (§ 5).

The cycle and the interdependencies between these three
processes is summarized in § 2.

2. THE SIZE ESTIMATION CYCLE
The cycle of size estimation and filtering is laid out in this

section. The basic cycle consists of four processes that com-
municate via log files and size lookup tables. For period p,
the inputs and outputs of the real-time traffic event logging,
estimation, predictions, and real-time abuse detection pro-
cesses are formalized in relations 1, 2, 3, and 4, respectively.

trafficp
RT-Log(p)
−−−−−−→ log-filesp (1)

log-filesp ✶entry abusive-log-filesp
Est(p)
−−−−→ estimates-tablep

(2)

∀p−2
i=p−w−1estimates-tablei

Prd(p)
−−−−→ predictions-tablep (3)

trafficp ✶IP predictions-tablep
RT-Abuse-Dtct(p)
−−−−−−−−−−−→ abusive-log-filesp

(4)
Real-time logging, denoted RT-Log(p) in rel. 1, finalizes

the traffic log-filesp as p + 1 starts. Next, the log-filesp are
consumed, among other input, by the estimation process,
Est(p), to produce the estimates-tablep mapping IPs that
issued traffic during p to their estimated sizes (rel. 2). Next,
the algorithm for predicting sizes, Prd(p+2), consumes the
estimates-tables from a sliding window of length w periods3,
p−w+1 through p, to produce the predictions-tablep+2. We
assume that before the beginning of p + 2, this prediction
process, Prd(p+2), completes and produces the predictions-
tablep+2, mapping IPs to their predicted sizes of period p+2.

The estimates-tables that contributed to predictions-tablep

are shown in rel. 3. The predictions-tablep is used by the
real-time abuse detection process, denotedRT-Abuse-Dtct(p)
in rel. 4, to produce the abusive-log-filesp for p. The abusive-
log-filesp contain the IDs of the traffic entries in log-filesp
identified as abusive. The abusive-log-filesp are joined with
the log-filesp by Est(p) to disregard the abusive traffic en-
tries, and produce estimates based solely on legitimate traf-
fic (rel. 2). While this joining makes estimation exclusively
based on non-abusive traffic, care should be taken to avoid
over-filtering of legitimate traffic.

This over-filtering caveat is best clarified by an example.
Let IP 10.1.1.1 be stable at an estimated size of 1 for the pe-
riods p−w through p−1, and then suddenly observes a flash
3The length, w, of the estimates window should be long
enough to span cycles in the activities of the IPs such that
Prd(.) considers legitimate cyclic size changes. Conversely,
w should not be excessively large not to include very old
sizes unrepresentative of future sizes. In our system, the
estimates window was set to span several weekly cycles.

250

Estimated Size of 10M Random IPs

Hyperlocal: A Graph Mining Solution*
1. Classify IPs as mobile vs. non-mobile
2. Construct a movement graph with mobile and 

non-mobile IP nodes
3. Use a local relational classifier on each unknown 

node to infer latitude and longitude 
4. Assign Census Block Group (CBG) ID to the 

inferred latitude and longitude using a k-nearest 
neighbor approach
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• Mobile IPs tend to 
change position 
more quickly than 
non-mobile IPs

• Default r = 100m 
(range of current 
Wi-Fi routers)
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IP 

Does 3rd party database 
say IP is mobile? 

Yes 

IP is classified 
as mobile 

No 

Does the IP appear outside 
radius r in 24 hours? 

IP is classified 
as mobile 

IP is classified 
as non-mobile 

Yes No 

1. Classifying IPs as Mobile vs. Non-mobile Reversing Third Party Decision
38
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2. Constructing IP × IP Movement Graph
• Circle nodes are non-mobile IPs
• Diamond nodes are mobile IPs

• Mobile IPs are time-stamped because they are transient
• An edge indicates an NUID’s movement from one 
IP to another
• Each edge stores

• # of movements between 
its endpoints, and

• inter-arrival times (IATs) 
for all movements across it

39

X 

B 

A @ t0 

C 

A @ t2 

D @ t1 
NUID: A network exchange ID associated with each device

3. Employing Local Relational Classifiers

• Why local?
• The farther out one moves in the movement graph, the farther away 

one gets geographically

• The movement graph is big è non-local approaches can be 
computationally burdensome

• Local relational classifier used: wvRN
• wvRN stands for weighted-vote Relational Neighbor [Macskassy & 

Provost, JMLR 2007]

• wvRN estimates the class membership probabilities and assumes 
homophily in the network data

40

What weights should we use in wvRN?
• Number of movements

• Intuition: A node v will be closer in distance to its neighbors with 
whom it has more movements

• The data contains many edges with only one movement

• Minimum IAT
• Intuition: The longer the IAT, the longer distance the user has 

potentially moved (sans traffic)
• Uses the normalized minimum IAT between two IPs
• Weight on the movement between node v and its neighbor i is

• minIATv is the minimum IAT across all of a given node v’s edge
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IP 

Does 3rd party database 
say IP is mobile? 

Yes 

IP is classified 
as mobile 

No 

Does the IP appear outside 
radius r in 24 hours? 

IP is classified 
as mobile 

IP is classified 
as non-mobile 

Yes No 

Figure 2: Decision Procedure for determining if an IP address
is mobile or non-mobile. The extra condition on whether an
IP is non-mobile is added because mobile IP addresses tend to
change position more quickly than non-mobile IP addresses [1].

NUID appears at hIP
A

, t1i and hIP
A

, t2i, but we do not consider
this is a movement and do not add an edge between them.

There may be multiple movements between two nodes in our IP
movement network. For each edge in our movement network, we
keep track the number of movements and inter-arrival times (IATs)
between them. Number of movements is the number of times that
we observe one NUID use the first IP and then change to using the
second IP. IAT of a movement is the time gap between the appear-
ances of NUID when it changes from one IP address to another.
Since there are multiple movements between, we actually have dis-
tributions of IATs over the edges. However, in our experiments, we
only use the minimum IAT of all movements on an edge since a
smaller IAT indicates a smaller distance.

3.2 Employing Local Relational Classifiers
When inferring location on the IP⇥IP movement graph, it is de-

sirable to do inference locally. This is because (1) the farther out
one moves in this movement graph, the farther away one gets ge-
ographically; and (2) the movement graph is often very large so
non-local approaches can be computationally burdensome.

For our local relational classifier, we utilize wvRN, which stands
for weighted-vote Relational Neighbor classifier [6]. wvRN esti-
mates class membership probabilities using the assumption of ho-
mophily (i.e., like attracts like) in the network data. Given the exis-
tence of homophily, wvRN performs well when compared to more
complex classifiers [6].

The key for our inference problem is what weight to use in wvRN.
We consider two weights: number of movements and minimum
IAT. We refer to the former as wvRN(numMoves) and the latter
as wvRN(minIAT).
wvRN(numMoves) uses the number movements between two

IP addresses as the weight in wvRN. The intuition behind this weight
is that a node v will be closer in distance to its neighbors with whom
it has more movements. So, w

i

is the number of movements be-
tween v and its i-th neighbor. In our data, many of the edges have
only one movement. This inspired us to try another weight based

on IATs.
wvRN(minIAT) uses the normalized minimum inter-arrival times

(IAT) between two IP addresses. It makes sense for IAT to be a
good indicator for the distance between two nodes since the longer
the IAT, the longer distance the user has potentially moved (sans
traffic). For a given node v, we denote the minimum IAT on all
edges of a node v with minIAT

v

. Then, the weight on the move-
ment between v and its neighbor i is defined as

w

i

= minIATv
min(t),8t2IAT (v,i) ,

where IAT (v, i) returns the list of IATs between v and i.
wvRN Equations: Given a node v, its neighbors Nbr(v), and

the weights on the edges between v and its neighbors (where w

i

is the weight on the edge from v to its i-th neighbor), we use the
following equations to predict latitude and longitude values for v:

latitude(v) =
P

i2Nbr(v) wi⇥latitude(i)
P

i2Nbr(v) wi

longitude(v) =
P

i2Nbr(v) wi⇥longitude(i)
P

i2Nbr(v) wi

Restricting Inter-arrival Times on IPs with One Known Neigh-
bor: Like most real-world networks, the IP movement graph has a
skewed degree distribution (see Figure 3), with many nodes having
only one neighbor. By putting a constraint on the IAT of IPs with
only one neighbor (say that the IAT has to be less than or equal
to 60 min), we can effectively prune the noisy links from the IP
movement graph. The only issue here is that with pruning, one also
reduces the size of the inference set. We explore this issue in-depth
in Section 4.

3.3 Assigning Census Block Groups as Prox-
ies for Location

We infer the location of a hashed public IP address at the Cen-
sus Block Group (CBG) level instead of the hlatitude, longitudei
level. The US Census Bureau defines a census block as the smallest
geographic unit used in tabulation of data collected from all resi-
dences. The US (including Puerto Rico) has about 8.2M census
blocks. As the name suggests, a CBG is a group of census blocks,
which are close geographically and never cross state or county
boundaries. The US (including Puerto Rico) has about 212K CBGs,
each containing an average of 39 blocks and between 600 and 3000
people.4 We decided to infer location at the CBG level because:
(1) it provides a more consistent labeling (as in location) for IP ad-
dresses; (2) it allows incorporation of external data that uses census
data such as demographics; and (3) in the majority of mobile ap-
plications (e.g. mobile ads), this level of location information is
sufficient for a successful campaign.

Given the predicted hlatitude, longitudei of an IP address from
wvRN (see previous section), we need a method for assigning a
CBG ID to it. Our procedure, a k-nearest neighbor approach, is as
follows:

Inputs:

• Location of interest, loc = hlat, loni

• For each CBG i in the US, i’s centroid c

i

= hlat
i

, lon

i

i and
i’s area a

i

in km

Output: The CBG ID that contains loc
4These numbers are from the 2000 census. For more details on
CBGs, see http://www.census.gov/.

wvRN Equations
• Inputs

• Node v
• Its neighbors Nbr(v)
• Weights W on the edges between v and its neighbors

• wvRN equations
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Figure 2: Decision Procedure for determining if an IP address
is mobile or non-mobile. The extra condition on whether an
IP is non-mobile is added because mobile IP addresses tend to
change position more quickly than non-mobile IP addresses [1].

NUID appears at hIP
A

, t1i and hIP
A

, t2i, but we do not consider
this is a movement and do not add an edge between them.

There may be multiple movements between two nodes in our IP
movement network. For each edge in our movement network, we
keep track the number of movements and inter-arrival times (IATs)
between them. Number of movements is the number of times that
we observe one NUID use the first IP and then change to using the
second IP. IAT of a movement is the time gap between the appear-
ances of NUID when it changes from one IP address to another.
Since there are multiple movements between, we actually have dis-
tributions of IATs over the edges. However, in our experiments, we
only use the minimum IAT of all movements on an edge since a
smaller IAT indicates a smaller distance.

3.2 Employing Local Relational Classifiers
When inferring location on the IP⇥IP movement graph, it is de-

sirable to do inference locally. This is because (1) the farther out
one moves in this movement graph, the farther away one gets ge-
ographically; and (2) the movement graph is often very large so
non-local approaches can be computationally burdensome.

For our local relational classifier, we utilize wvRN, which stands
for weighted-vote Relational Neighbor classifier [6]. wvRN esti-
mates class membership probabilities using the assumption of ho-
mophily (i.e., like attracts like) in the network data. Given the exis-
tence of homophily, wvRN performs well when compared to more
complex classifiers [6].

The key for our inference problem is what weight to use in wvRN.
We consider two weights: number of movements and minimum
IAT. We refer to the former as wvRN(numMoves) and the latter
as wvRN(minIAT).
wvRN(numMoves) uses the number movements between two

IP addresses as the weight in wvRN. The intuition behind this weight
is that a node v will be closer in distance to its neighbors with whom
it has more movements. So, w

i

is the number of movements be-
tween v and its i-th neighbor. In our data, many of the edges have
only one movement. This inspired us to try another weight based

on IATs.
wvRN(minIAT) uses the normalized minimum inter-arrival times

(IAT) between two IP addresses. It makes sense for IAT to be a
good indicator for the distance between two nodes since the longer
the IAT, the longer distance the user has potentially moved (sans
traffic). For a given node v, we denote the minimum IAT on all
edges of a node v with minIAT

v

. Then, the weight on the move-
ment between v and its neighbor i is defined as

w

i

= minIATv
min(t),8t2IAT (v,i) ,

where IAT (v, i) returns the list of IATs between v and i.
wvRN Equations: Given a node v, its neighbors Nbr(v), and

the weights on the edges between v and its neighbors (where w

i

is the weight on the edge from v to its i-th neighbor), we use the
following equations to predict latitude and longitude values for v:

latitude(v) =
P

i2Nbr(v) wi⇥latitude(i)
P

i2Nbr(v) wi

longitude(v) =
P

i2Nbr(v) wi⇥longitude(i)
P

i2Nbr(v) wi

Restricting Inter-arrival Times on IPs with One Known Neigh-
bor: Like most real-world networks, the IP movement graph has a
skewed degree distribution (see Figure 3), with many nodes having
only one neighbor. By putting a constraint on the IAT of IPs with
only one neighbor (say that the IAT has to be less than or equal
to 60 min), we can effectively prune the noisy links from the IP
movement graph. The only issue here is that with pruning, one also
reduces the size of the inference set. We explore this issue in-depth
in Section 4.

3.3 Assigning Census Block Groups as Prox-
ies for Location

We infer the location of a hashed public IP address at the Cen-
sus Block Group (CBG) level instead of the hlatitude, longitudei
level. The US Census Bureau defines a census block as the smallest
geographic unit used in tabulation of data collected from all resi-
dences. The US (including Puerto Rico) has about 8.2M census
blocks. As the name suggests, a CBG is a group of census blocks,
which are close geographically and never cross state or county
boundaries. The US (including Puerto Rico) has about 212K CBGs,
each containing an average of 39 blocks and between 600 and 3000
people.4 We decided to infer location at the CBG level because:
(1) it provides a more consistent labeling (as in location) for IP ad-
dresses; (2) it allows incorporation of external data that uses census
data such as demographics; and (3) in the majority of mobile ap-
plications (e.g. mobile ads), this level of location information is
sufficient for a successful campaign.

Given the predicted hlatitude, longitudei of an IP address from
wvRN (see previous section), we need a method for assigning a
CBG ID to it. Our procedure, a k-nearest neighbor approach, is as
follows:

Inputs:

• Location of interest, loc = hlat, loni

• For each CBG i in the US, i’s centroid c

i

= hlat
i

, lon

i

i and
i’s area a

i

in km

Output: The CBG ID that contains loc
4These numbers are from the 2000 census. For more details on
CBGs, see http://www.census.gov/.
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Restricting IATs on IPs with 1 Known Neighbor

• IP × IP movement graph has a skewed distribution
• Many nodes have only one neighbor

• Put a constraint on the IAT of IPs with only one 
neighbor
• This effectively prunes the noisy links from our graph
• It also reduces the size of the inference set
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4. Assigning CBGs as Proxies for Location

• Infer location of a hashed public IP address at the 
CBG level and not at the ⟨latitude, longitude⟩ level

• Why use CBG ?
1. It provides a more consistent labeling (as in location) 

for IPs 
2. It allows incorporation of external data that uses 

census data such as demographics
3. In the majority of mobile applications, this level of 

location information is sufficient for a successful 
campaign
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A k-Nearest Neighbor Approach for Assigning 
a CBG ID to a ⟨lat, lon⟩

• Inputs
• Location of interest

• loc = ⟨lat, lon⟩
• For each CBG i in the US, 

• i’s centroid: ci = ⟨lati, loni⟩
• i’s area ai in km

• Output
• The CBG ID that contains loc

45

• Procedure
1. C = centroids of the k nearest CBGs 

to loc
2. For j in C

• Calculate the distance between loc
& centroid of the jth nearest CBG
• dj = distance(loc, cj)

• Calculate the radius of CBG 
corresponding to the jth centroid 
• rj = sqrt(aj / π)

• Calculate the ratio of distance over 
radius
• ratioj = dj / rj

3. Return the CBG ID corresponding to 
min(ratioj), for all j in C

Recap of Hyperlocal
1. Classify IPs as mobile vs. non-mobile
2. Construct a movement graph with mobile and 

non-mobile IP nodes
3. Use a local relational classifier on each unknown 

node to infer latitude and longitude 
4. Assign Census Block Group (CBG) ID to the 

inferred latitude and longitude using a k-nearest 
neighbor approach
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* http://eliassi.org/ESM2013TR.pdf

Experiments
• Experiments are divided into nine combinations of 
infer location for X using Y 

• Values for X are ‘all IPs’, ‘mobile IPs’, and ‘non-
mobile IPs’ 

• Values for Y are ‘all neighbors’, ‘mobile neighbors’, 
and ‘non-mobile neighbors’ 

• Measure accuracy by checking the predicted CBG 
ID vs. the actual CBG ID of an IP 
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Implementation & Runtime
• Hardware & OS: Macbook Pro with 

• CPU 2.66 GHz Intel Core i7
• RAM 8 GB DDR3
• hard drive 500 GB SSD
• OS X 10.8

• Language: Python
• Supporting Software: NetworkX & MongoDB
• Runtime: On average 1.2 milliseconds to process 
each RTB request

48
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Data Name Collection 
Date

# RTB 
Requests 

with Valid US 
NUIDs

% RTB 
Requests 
without
Location

% RTB 
Requests 

from 
Mobile IPs

Oct-2012 Mon 
10/01/2012 44.1M 36.5% 57.3%

Feb-2013 Wed 
02/06/2013 21.6M 56.7% 47.7%

Data

• From Oct-2012 to Feb-2013
• # of RTB requests decreased by ~50% 

• Due to reductions from SSPs
• # of requests without location information increased by ~55%
• # of requests from mobile IPs decreased by ~17%
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All IPs are hashed public IP addresses.

IPs on the US Map
50

Oct-2012 Feb-2013

Data Characteristics per SSP
51
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Supply Side Providers 
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SSP4 provides about 50% of the requests for both datasets.

% Requests with and without Location 
Information per SSP
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• None of the requests from SSP1 and SSP3 have location 
information. 

• All the requests from SSP7 have location information. 

Oct-2012 Homophily per SSP
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Feb-2013 Homophily per SSP
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that uses census data such as demographics; and (3) in the major-
ity of mobile applications (e.g., mobile ads), this level of location
information is sufficient for a successful campaign.

Given the predicted hlatitude, longitudei of an IP address from
wvRN (see previous section), we need a method for assigning a
CBG ID to it. Our procedure, a k-nearest neighbor approach, is as
follows:

Inputs:

• Location of interest, loc = hlat, loni

• For each CBG i in the US, i’s centroid ci = hlati, lonii and
i’s area ai in km

Output: The CBG ID that contains loc

Procedure:

1 C  centroids of the k nearest CBGs to loc

2 For j in C

dj  distance(loc, cj) // distance between loc and the
centroid of the j-th nearest CBG

rj  
p

(
aj

⇡ ) // CBG radius of the j-th centroid

ratioj  dj
rj

// ratio of distance to radius

3 Return the CBG ID corresponding to min(ratioj), 8j 2 C

Since we compute the latitude and longitude of an IP based on
neighboring IP addresses’ latitudes and longitudes, a location may
be returned that is in the middle of a lake, forest, or desert. In such
cases, the minimum ratio is high; and it is unreasonable to return a
CBG ID. Thus, our algorithm will return “unknown” in such cases.
Specifically, if the minimum ratio (

dj
rj
) is over a threshold t, our

procedure returns “unknown” for the CBG ID of the given IP. In our
experiments, the percentage of CBG IDs returned as “unknown”
was less than 1% with k = 5 and t = 2. See Section 4.

4. EXPERIMENTS
This section is organized as follows: data description, experi-

mental setup, results, and discussion.

4.1 Data Description
We conducted experiments on two real-world data sets. Table 1

lists the basic characteristics of each data set. For the experiments,
we only consider RTB requests with valid USA NUIDs. Recall
that NUID is the network exchange identifier. Each device has an
NUID; but it is not always provided by the RTB system. Also,
NUIDs for the same device may be different across different SSPs.

Figure 3 provides details about the data sets such as distribution
of RTB requests over SSPs, and the conditional distributions of
RTB requests over SSPs given only the requests with location, and
then given only the requests without location information. Recall
that we may not have location information for a request because
(1) the RTB system did not forward it, (2) the SSP did not forward
it, (3) the device did not capture it, or (4) the user did not enable
location-based services.

Figure 4 shows the distribution of requests with and without lo-
cation information per SSP. All requests from some SSPs – e.g.,
SSP1 and SSP3 – are without location information. On the other
hand, some SSPs – e.g., SSP7 – provide location information for
all of their requests.

Table 2: Homophily in IP ⇥ IP movement graphs. Homophily
is defined as the number of movements whose (IP) endpoints
are from the same SSP divided by the total number of all move-
ments. Homophily levels are high in both data sets. Movements
between mobile IPs have very high homophily.

Homophily Oct-2012 Feb-2013
All movements 96.5% 90.8%

Mobile to mobile movements 98.6% 99.2%
Non-mobile to non-mobile movements 86.9% 78.1%

Table 2 reports the amount of homophily (i.e., like attracting like)
in our IP⇥ IP movement graphs. We define homophily as the num-
ber of movements whose (IP) endpoints are from the same SSP di-
vided by the total number of all movements. Homophily is high
(greater than 90%) in both data sets. The Feb-2013 data has less
homophily (by ⇡ 5.7%) than the Oct-2012 data. Homophily be-
tween mobile IPs is very high (over 98%). Homophily between
non-mobile IPs is lower than that of mobile IPs (namely, 86.9% for
Oct-2012 and 78.1% for Feb-2013).

Given the high levels of homophily in the IP ⇥ IP movements
graphs, can we predict location for IPs whose requests are from
SSPs without location information? The answer to this question is
yes. We observe sufficient non-homophily in the graphs that if an
SSP does not have location information for its requests, we can still
predict location for its IPs (because its IPs are likely to be linked to
other IPs from SSPs with location information). Figure 5 depicts
this non-homophily for SSP1 and SSP3, which do not provide any
location information for their requests. More than 50% of IPs from
these SSPs have movements to IPs from other SSPs (which provide
location information).

4.2 Experimental Setup
We show results for two different methods: wvRN(minIAT)

and wvRN(numMoves). See Section 3 for details on these meth-
ods. Recall that we measure accuracy by checking the predicted
CBG ID vs. the actual CBG ID of an IP address.

We divide our experiments into nine combinations of: infer lo-
cation for X using Y . Values for X are ‘all IPs’, ‘mobile IPs’, and
‘non-mobile IPs’. Values for Y are ‘all neighbors’, ‘mobile neigh-
bors’, and ‘non-mobile neighbors’. As discussed before, these IPs
are all public IP addresses that have been hashed.

Figure 6 shows the degree distribution for these nine combina-
tions with all neighbors and with only known neighbors (i.e. neigh-
bors with location information) for the Oct-2012 data. The plots for
the Feb-2013 data are similar and were omitted for brevity. We ob-
serve that except for degree distribution over mobile IPs, the rest
follow power-law distributions with heavy tails. The mobile de-
gree distributions are different because we represent them as time-
stamped nodes (as described in Section 3.1).

Also, the distributions for all neighbors and known neighbors
are very similar. We do not observe sparsity around the neighbors
an IP. For example, in the Oct-2012 data approximately 70% of
an IP’s neighbors are known. Therefore, we do not attempt more
computationally expensive relational-learning methods like collec-
tive classification [9, 6, 5, 4].

ℎ!"!#ℎ!"# = !#!of!movements!whose!IP!endpoints!are!from!the!same!SSPtotal!#!of!movements  

There is a considerable homophily in the IP×IP movement graph

Core Results: wvRN(minIAT) vs. wvRN(numMoves)

56

Table 3: Core results: wvRN(minIAT) vs. wvRN(numMoves). For each method, the highest accuracy values are in boldface. The
differences between the two methods are not statistically significant at the 0.05 level. The number of predictions varies depending on
the particular inference and the types of neighbors used in the inference process. Accuracy is lower when inferring on non-mobile
IPs or using them for inference because their homophily is lower (see Table 2). Radius r = 100m.

Accuracy Accuracy Number of % Mobile
Infer location for all IPs . . . wvRN(minIAT) wvRN(numMoves) Predictions in Predictions

Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013
using all neighbors 71.6 | 70.8 69.7 | 69.3 1,189,679 | 328,015 91.0% | 83.8%
using mobile neighbors 74.4 | 74.8 72.6 | 73.5 1,077,644 | 278,674 93.2% | 87.4%
using non-mobile neighbors 51.9 | 57.7 51.7 | 57.3 98,338 | 40,777 68.7% | 62.1%

Infer location for mobile IPs . . .
using all neighbors 74.2 | 75.0 72.3 | 73.6 1,082,566 | 274,900 100% | 100%
using mobile neighbors 76.6 | 79.1 74.7 | 77.9 1,004,601 | 243,630 100% | 100%
using non-mobile neighbors 50.4 | 54.7 50.2 | 54.5 67,553 | 25,323 100% | 100%

Infer location for non-mobile IPs . . .
using all neighbors 45.5 | 49.0 44.0 | 46.8 107,113 | 53,115 0% | 0%
using mobile neighbors 44.0 | 45.1 42.5 | 43.0 73,043 | 35,044 0% | 0%
using non-mobile neighbors 55.4 | 62.7 55.0 | 62.0 30,785 | 15,454 0% | 0%

Table 4: Inference over IPs with one known neighbor and IAT  60 minutes. Accuracy results for are shown wvRN(numMoves).
The highest accuracy values are in boldface. Restricting IAT to  60 minutes improves accuracy by an average of 12% on Oct-2012
and 23% on Feb-2013 data; but reduces the number of predictions by an average of 4 times for Oct-2012 and 5 times for Feb-2012.
See Table 5 for these differences. Radius r = 100m.

Accuracy Number of % Mobile
Infer location for all IPs with 1 known neighbor with IAT  60min . . . wvRN(numMoves) Predictions in Predictions

Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013
using all neighbors 72.7 | 76.0 606,274 | 179,294 92.4% | 87.1%
using mobile neighbors 75.4 | 79.0 546,498 | 154,610 94.3% | 90.4%
using non-mobile neighbors 52.6 | 59.2 86,981 | 35,073 74.1% | 68.3%

Infer location for mobile IPs with 1 known neighbor with IAT  60min . . .

using all neighbors 74.7 | 78.7 559,976 | 156,226 100% | 100%
using mobile neighbors 77.1 | 81.9 515,575 | 139,714 100% | 100%
using non-mobile neighbors 51.3 | 55.9 64,495 | 23,939 100% | 100%

Infer location for non-mobile IPs with 1 known neighbor with IAT  60min . . .

using all neighbors 49.1 | 57.5 46,298 | 23,068 0% | 0%
using mobile neighbors 46.9 | 51.5 30,923 | 14,896 0% | 0%
using non-mobile neighbors 56.3 | 66.5 22,486 | 11,134 0% | 0%

Table 5: Inference over IPs with one known neighbor and IAT > 60 minutes. Accuracy results for are shown wvRN(numMoves).
The highest accuracy values are in boldface. Allowing IAT of > 60 minutes decreases accuracy. This is because IAT on the movement
edge is correlated with distance. Radius r = 100m.

Accuracy Number of % Mobile
Infer location for all IPs with 1 known neighbor with IAT > 60min . . . wvRN(numMoves) Predictions in Predictions

Oct-2012 | Feb-2013 Oct-2012 | Feb-2013 Oct-2012 | Feb-2013
using all neighbors 56.3 | 50.7 1,573,436 | 773,095 81.1% | 78.4%
using mobile neighbors 59.9 | 55.6 1,262,022 | 594,504 83.6% | 80.9%
using non-mobile neighbors 42.5 | 35.6 369,519 | 207,099 71.0% | 69.6%

Infer location for mobile IPs with 1 known neighbor with IAT > 60min . . .

using all neighbors 59.5 | 55.2 1,275,406 | 605,948 100% | 100%
using mobile neighbors 63.0 | 61.7 1,055,269 | 481,151 100% | 100%
using non-mobile neighbors 43.5 | 31.6 262,188 | 144,226 100% | 100%

Infer location for non-mobile IPs with 1 known neighbor with IAT > 60min . . .

using all neighbors 42.8 | 34.8 298,030 | 167,147 0% | 0%
using mobile neighbors 44.2 | 30.0 206,753 | 113,353 0% | 0%
using non-mobile neighbors 40.3 | 44.9 107,331 | 62,873 0% | 0%

• Differences between the two methods are not statistically significant 
at the 0.05 level 

• Number of predictions varies depending on the particular inference 
and the neighbor types used in the inference process

IATs on movement edges are correlated 
with distances
• Shorter IAT, shorter distance
• For IPs with only one known neighbor, restricting 
IAT to ≤ 60 minutes 
• Improves accuracy by an average of 12% on Oct-2012 

and 23% on Feb-2013 data
• Reduces the number of predictions by an average of 4 

times for Oct-2012 and 5 times for Feb-2012

• Restricting IATs to > 60 minutes decrease accuracy
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Correct (Blue) & Incorrect (Red) Classification
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Oct-2012 Feb-2013

Limitations of a Graph Mining Approach
• Cannot infer location for IPs with no neighbors 

• Use other info – e.g., site visits; subnet info, etc.

• Cannot infer location for IPs with no known 
neighbors

• Use collective classification.
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geolocalization based on its own proprietary technique.
Neither the details of the technique nor a sample dataset
are publicly available.

There are several graphical traceroute tools that of-
fer the geographical location of each intermediate router.
GTrace [16] successively uses DNS LOC entries, a pro-
prietary database of domain name to geographical lo-
cation mappings, NetGeo, and domain name country
codes, as available, to localize a given node. Visual-
Route [4] is a commercial traceroute tools that also offer
geographic localization of the nodes along the path.

2.2 REGION LOCALIZATION

GeoLim [11] derives the estimated position of a node by
measuring the network latency to the target from a set
of landmarks, extracts upper bounds on position based
on inter-landmark distance to latency ratios, and locates
the node in the region formed by the intersection of these
fixes to established landmarks. Since it does not use neg-
ative information, permit non-convex regions or handle
uncertainty, this approach breaks down as inter-landmark
distances increase.

In contrast, Octant provides a general framework for
combining both positive and negative constraints to yield
a small, bounded region in which a node is located. It dif-
fers from past work in that it enables negative informa-
tion to be used for localization, separates the selection
of a representative point estimate from the computation
of the feasible set of points in which a node might be
located, permits non-convex solution areas, and aggres-
sively harvests constraints from network latency mea-
surements.

Topology-based Geolocation (TBG) [13] uses the
maximum transmission speed of packets in fiber to con-
servatively determine the convex region where the target
lies from network latencies between the landmarks and
the target. It additionally uses inter-router latencies on
the landmarks to target network paths to find a physi-
cal placement of the routers and target that minimizes
inconsistencies with the network latencies. TBG relies
on a global optimization that minimizes average posi-
tion error for the routers and target. This process can
introduce error in the target position in an effort to re-
duce errors on the location of the intermediate routers.
Octant differs from TBG by providing a geometric solu-
tion technique rather than one based on global optimiza-
tion. This enables Octant to perform geolocalization in
near real-time, where TBG requires significantly more
computational time and resources. A geometric solution
technique also allows Octant to seamlessly incorporate
exogenous geometric constraints stemming from, for ex-
ample, geography and demographics. This provides Oc-
tant with more sources of information for its geolocaliza-
tion compared to TBG.

Figure 1: Location representation in Octant. Octant rep-
resents the estimated target location as a region bounded
by a set of Bézier curves. Each curve a, b, c consists of
four control points P0, ..., P3 with P0 and P3 as the start
and end points respectively and P1 and P2 as control
points that help direct the curve. This figure requires a to-
tal of only nine control points to precisely define. Bézier
curves provide a compact way to represent large, com-
plex areas precisely. They also admit efficient intersec-
tion, union, and subtraction operations.

Localization has been studied extensively in wireless
systems. The wireless localization problem, however,
is significantly different from, and easier than, localiza-
tion on the Internet, as air is close to a perfect medium
with well-understood transmission characteristics. The
most comprehensive work on localization in wireless
networks is Sextant [12]. We share with Sextant the ba-
sic insight for accommodating both positive and nega-
tive constraints and enabling constraints to be used by
landmarks whose positions are not known definitively.
Octant differs substantially from Sextant in the various
mechanisms it uses to translate Internet measurements
to constraints, including its mapping of latencies to con-
straints, isolating last hop delays, and compensating for
indirect routes, among others.

3 FRAMEWORK
The goal of the Octant framework is to compute a re-
gion βi that comprises the set of points on the surface
of the globe where node i might be located. This es-
timated location region βi is computed based on con-
straints γ0 . . . γn provided to Octant.

A constraint γ is a region on the globe in which the
target node is believed to reside, along with an asso-
ciated weight that captures the strength of that belief.
The constraint region can have an arbitrary boundary,
as in the case of zipcode information extracted from
the WHOIS database or coastline information from a
geographic database. Octant represents such areas us-
ing Bézier-regions, which consist of adjoining piecewise

• Locate IPs by 

• representing node 
positions through regions,

• expressing constraints 
as areas, and

• computing locations by 
solving a system of geometric constraints

• Relies on pings to estimate the round-trip time between 
two IPs

Related Work [Wong et al. NSDI 2007]
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B. Wong, I. Stoyanov, and E. G. Sirer. Octant: A comprehensive framework 
for the geolocalization of internet hosts. In NSDI, pages 23–23, 2007.
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Related Work [Wang et al. NSDI 2011]

• A client-independent geo-location system

• Like [Wong et al. NSDI 2007] 
relies on pings to estimate the 
round-trip time between two IPs

• Also relies on landmarks, 
which are collected manually
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Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang. Towards street-
level client-independent IP geolocation. In NSDI, pages 27–27, 2011. 

Figure 1: An example of intersection created by distance
constraints

demonstrated that 2/3 c is a loose upper bound in practice
due to transmission delay, queuing delay etc. [15, 17].
Based on this observation, we adopt 4/9 c from [17] as
the converting factor between measured delay and geo-
graphical distance. We also demonstrate in Section 4,
by using this converting factor, we are always capable of
yielding a viable area covering the targeted IP.
Once we establish the distance from each vantage

point, i.e., ping server, to the target, we use multilater-
ation to build an intersection that covers the target using
known locations of these servers. In particular, for each
vantage point, we draw a ring centered at the vantage
point, with a radius of the measured distance between
the vantage point and the target. As we show in Section
4, this approach indeed allows us to always find a region
that covers the targeted IP.
Figure 1 illustrates an example. It geolocates a col-

lected target (we will elaborate the way of collecting the
targets in the wild in Section 4.1.2) whose IP address
is 38.100.25.196 and whose postal address is ’1850, K
Street NW, Washington DC, DC, 20006’. We draw rings
centered at the locations of our vantage points. The ra-
dius of each ring is determined by the measured distance
between the vantage point (the center of this ring) and the
target. Finally, we geolocate this IP in an area indicated
by the shaded region, which covers the target, as shown
in Figure 1.
Thus, by applying the CBG approach, we manage to

geolocate a region where the targeted IP resides. Ac-
cording to [17, 24], CBG achieves a median error be-
tween 143 km and 228km distance to the target. Since
we strive for a much higher accuracy, this is only the
starting point for our approach. To that end, we depart
from pure delay measurements and turn to the use of ex-
ternal information available on the Web. Our next goal is
to further determine a subset of ZIP Codes, i.e., smaller
regions that belong to the bigger region found via the

Vantage Point
Landmark

Target
Router

V1 V2

R2

R3
R1

D3

D4

D2D1

Figure 2: An example of measuring the delay between
landmark and target

CBG approach. Once we find the set of ZIP Codes, we
will search for additional websites served within them.
Our goal is to extract and verify the location information
about these locally-hosted Web services. In this way, we
obtain a number of accurate Web-based landmarks that
we will use in Tiers 2 and 3 to achieve high geolocation
accuracy.
To find a subset of ZIP Codes that belong to the given

region, we proceed as follows. We first determine the
center of the intersection area. Then, we draw a ring
centered in the intersection center with a diameter of 5
km. Next, we sample 10 latitude and longitude pairs at
the perimeter of this ring, by rotating by 36 degrees be-
tween each point. For the 10 initial points, we verify that
they belong to the intersection area as follows. Denote
by U the set of latitude and longitude pairs to be verified.
Next, denote by V the set of all vantage points, i.e., ping
servers, with known location. Each vantage point vi is
associated with the measured distance between itself and
the target, denoted by ri. We wish to find all u ∈ U that
satisfy

distance(u, vi) ≤ ri for all vi ∈ V

The distance function here is the great-circle distance
[23], which takes into account the earth’s sphericity and
is the shortest distance between any two points on the
surface of the earth measured along a path on the surface
of the earth. We repeat this procedure by further obtain-
ing 10 additional points by increasing the distance from
the intersection center by 5 km in each round (i.e., to 10
km in the second round, 15 km in the third etc.). The
procedure stops when not a single point in a round be-
longs to the intersection. In this way, we obtain a sample
of points from the intersection, which we convert to ZIP
Codes using a publicly available service [4]. Thus, with
the set of ZIP Codes belonging to the intersection, we
proceed to Tier 2.

3

Recap & Open Problems
• Graph mining on just the structure of an IP×IP movement 

graph to infer locations, in terms of CBGs, for hashed public 
IP addresses produces an accuracy of ~75%

• Results are impressive since estimating the correct CBG is 
out of 212K possibilities 

• Open problems

• Inference on truncated IP addresses

• Constrained collective classification
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MINING SMARTPHONE AND MOBILITY DATA:
ALGORITHMS & APPLICATIONS TO LBSNS & 

MOBILE ADVERTISING
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