RUTGERS

MINING DATA FROM MOBILE DEVICES

Mobile technology overview

Spiros Papadimitriou, Tina Eliassi-Rad

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad

Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad

Mobile OSes

- iOS
- Android
- Windows Phone
- Blackberry
- Symbian
- (Ubuntu, Mozilla, OpenMoko, ...)

RUTGERS Mining Data from Mobile Devices / Papadimitricu, Elassi-Rad Why do you care?

- What is possible?
- · What might be possible?
- What is not possible?

A basic understanding of the realities helps make realistic assumptions about

- Collection
- Transmission
- Processing

Overview

RUTGERS

- Sensors & location API
- Network connectivity
- Power
- Mobile app basics

Smartphone	senso	rs	
Sensor	Туре	Avail. since	 Hardware or software
Accelerometer	HW	1.5	 ("virtual") iPhone: more standardized Android: greater variety no minimum
Light	HW	1.5	
Magnetic field	HW	1.5	
Proximity	HW	1.5	
Temperature	HW	1.5 (4.0)	required, varied APIs
Orientation	SW	1.5	across versions
Gyroscope	HW	2.3	
Pressure	HW	2.3	
Gravity	SW/HW	2.3	
Linear acceleration	SW/HW	2.3	
Rotation vector	SW/HW	2.3	
Relative humidity	HW	4.0	

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad 8
Accelerometer
Example code (1/3)
Android (1/2)
<pre>public class SensorActivity extends Activity implements SensorEventListener { private SensorManager mSensorManager;</pre>
private Sensor mAccelerometer;
<pre>@Override Public final onCreate(Bundle savedInstanceState) {</pre>
<pre>mSensorManager = \ (SensorManager)getSystemService(Context.SENSOR_SERVICE);</pre>
<pre>mAccelerometer = \ mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);</pre>
<pre>mSensorManager.registerListener(\ this, mAccelerometer, \ SensorManager.SENSOR_DELAY_NORMAL);</pre>
}
[continued]

Rutgers Accelerometer

Shortcomings

- Cannot distinguish between gravity and acceleration
 Impossible: "equivalence principle"
 - · Solution: use low-pass filter to estimate gravity
- What if device simultaneously rotates & linearly accelerates?
 Confused; need more data → gyroscope

Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad

Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad Inertial measurement & navigation

15

- 9 DoF (degrees of freedom) available
- · 3-axis accelerometer
- 3-axis gyro

RUTGERS

- 3-axis magnetometer
- Combine in software for accurate:
- · Position, velocity, and acceleration (linear and angular)
- Dead reckoning

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad Inertial measurement Gravity estimation

Low-pass filter on acceleration data; e.g., on Android Gingerbread: $\vec{g}_{t} = \lambda_{0} \cdot (\vec{a}_{t} + \vec{a}_{t-2}) + \lambda_{1} \cdot \vec{a}_{t-1} - \kappa_{1} \cdot \vec{g}_{t-1} - \kappa_{2} \cdot \vec{g}_{t-2}$ where λ_i, κ_i depend on sampling rate and user-defined decay parameters 16

Basic operation, also used for:

- Linear acceleration estimate $\vec{a}_t \vec{q}_t$
- Rotation vector (orientation wrt. magnetic north)

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Elia Inertial navigation Dead reckoning

- 1. Integrate gyro to obtain orientation
- 2. Use accelerometer and gyro (orientation) data to estimate linear acceleration
- 3. Doubly integrate acceleration to obtain position change
- Errors accumulate over time ($\sim t^3$)
- · Error depends on sampling rate
- · How accurate is it?
- "Pro" (air navigation) answer:
- GPS: better than 9m
- · Inertial: ~650m after one hour

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad Other sensors

- Proximity
- Less common:
- Thermometer
- · But: gyroscope & compass often has temperature output as well
- Light
- Pressure (barometric) → altitude

RUTGERS

Location APIs Fused location services

- Combine different location providers
- User specifies:
- Min and max update period
- Accuracy preferences
- Location service takes care of managing different low-level providers, to obtain best accuracy at low(est) power

Mining Data from Mobile Devices / Papadimitriou, Eliassi-Ra

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Eliz

Geo-fences and activities

Geo-fencing:

- · User specifies a POI or map area
- Requests to receive alerts when user is near / inside fence

Activity recognition (Android APIs):

· Use sensor and location data to detect what user is doing

Mining Data from Mobile Devices / Papadimitriou, Elia

- · Walking vs cycling vs driving
- · Provides probability for each activity

RUTGERS

Indoor localization

- No O/S level APIs (?)
- Google Maps offers indoors navigation
 Mix of WiFi-based localization and (very rough) dead reckoning

Mining Data from Mobile Devices / Papadimitriou, Elia

- May be possible to obtain WiFi RSS data
 Android offers APIs, iOS is restricted
- Other applications have used other signals (like audio)
- Custom solutions also exist (e.g., ultrasound-based)
- More on this later ...

Rutgers Overview

- Sensors
- Network connectivity
- Power
- Mobile app basics

RUTGERS	Mining Data	from Mobile Device	s / Papadimitrie	ou, Eliassi-Rad	27
802.11b/g/n (W	/iFi)				
 Introduced around the Evolved over time: bai 	same ndwidtl	time as G h and ubic	iPRS quity		
1000	-	Protocol	Year	B/W (Mbit/s max)	
≈ 600 -		—	1997	2	
10000 1000 1000	Д	b	1999	11	
200		g	2003	54	
0		n	2009	72.2 (2.4GHz)	
30 ⁸⁰ 00 ⁴⁰ 00 ⁰⁰ 00 ³⁰ 00	12			150 (5GHz)	
		ac (draft)	2012	88-867	

Spec	Bluetooth "Classic"	BLE
Range (max)	100m	50m
Data rate	1-3Mbit/s	1 Mbit/s
App. throughput	0.7-2.1Mbit/s	0.27Mbit/s
Latency	100ms (typ.)	6ms
Time to send data	100ms	~3ms
Peak current	<30 mA	<15 mA
Power consumption	100% (reference)	10-50% (use case dep.)

- RUTGERS Mining Data from Mobile Devices / Papadimitriou, Ellassi-Rad 30
 - Zigbee / XBee
 - Cheap transceivers (e.g., Nordic chipsets)
 - · Non-standard (on phones), require ugly dongles, etc.
 - But, might be worth it for prototyping

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad Cellular and WiFi power · Overall comparable power draw 1400 · WiFi can consume substantially 1200 1000 ess (esp. if kept connected) terms (esp. if kept connected) terms always available/on € 800 600 400 200 0 Radio active · One larger transfer is much better adive scall, of stive scal stive than many small ones

· Separate app.-specific processor chip

- · All-in-one IMU chip (e.g., MPU6050)

RUTGERS Mining Data from Mobile Devices / Papadimitricu, Elfassi-Rad Advanced sleep modes CPU power

- If doing no work, it's much better to turn off CPU completely
- Even for a few milliseconds (better than nothing)
- Around 30x less power draw
- All modern phones will do this automatically
- Additionally, facilities to reduce number of wakeups; e.g., batching timer events, background messaging (aka. push notifications), etc.

Mining Data from Mobile Devices / Papadimitriou, Elias

RUTGERS

Overview

- Sensors
- Network connectivity
- Power
- Mobile app basics

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rac Programming paradigm

Heavily event-oriented !

- Application must respond to its environment; e.g.
- Network connectivity changes
- Incoming calls / messages / events
- Sensor / location data
- ...
- Application must use resources efficiently; e.g.
- May be pre-empted and/or killed at any time
- May choose to respond to status information (e.g, battery level)
 ...

Cannot.

- · Assume a single main() thread with sequential flow
- Control lifetime of thread(s)

Programming paradigm

Android: activity paradigm

RUTGERS

- · You can think of an activity as a screen
- · Can be in different states during it's lifecycle
- · Need to respond to state-change events
- System determines state based on:
- User interactions (e.g., start a different activity)
- · External events (e.g., screen rotation, incoming call, ...)

Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad

- Available resources (memory, CPU, etc)
- Execute in the main app thread
- Responsible for persisting any app-specific state, as necessary

RUTGERS Mining Data from Mobile Devices / Papadimitriou, Eliassi-Rad

Background tasks

Short lived (e.g., fetch a URL):

- Can be started in separate threads
- · But: need to be prepared for activity termination/restart

Long lived:

- Need to use system APIs to register themselves and allow system to manage them
- Timers, background services, RPC interfaces

Avoid whenever possible!!

 Use system services instead, e.g., geo-fences, push notifications, etc

Ming Data from Mobile Dovices / Papadimitricu, Eliass-Pad PROFINE MINING DATA FROM MOBILE DEVICES Mobile technology overview Spiros Papadimitricu, Tina Eliassi-Rad

