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MINING DATA FROM MOBILE DEVICES

Mobile technology overview
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Mobile OSes

• iOS

• Android

• Windows Phone

• Blackberry

• Symbian

• (Ubuntu, Mozilla, OpenMoko, …)
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Why do you care?

• What is possible?

• What might be possible?

• What is not possible?

A basic understanding of the realities helps make realistic 
assumptions about

• Collection

• Transmission

• Processing
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Overview

• Sensors & location API

• Network connectivity

• Power

• Mobile app basics
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Smartphone sensors
(Android)

Sensor Type Avail. since

Accelerometer HW 1.5

Light HW 1.5

Magnetic field HW 1.5

Proximity HW 1.5

Temperature HW 1.5 (4.0)

Orientation SW 1.5

Gyroscope HW 2.3

Pressure HW 2.3

Gravity SW/HW 2.3

Linear acceleration SW/HW 2.3

Rotation vector SW/HW 2.3

Relative humidity HW 4.0
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• Hardware or software 
(“virtual”)

• iPhone: more 
standardized

• Android: greater 
variety, no minimum 
required, varied APIs 
across versions

Accelerometer
Introduction

• Measures acceleration
• Static (gravity) � orientation

• Dynamic (linear motion)

• Example*: LIS33DLH (iPhone)
• ~$1.5 (DigiKey, bulk)

• 0.7mW on / 0.03mW low power:

325 days / 20 years (1440mAh @ 3.8V)

• ±2g / ±4g / ±8g selectable range

• 16-bit dynamic range

• 0.5Hz – 1KHz sample rate

• Simple interrupt generators (free fall, motion)
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STMicro LIS331DLH

http://www.memsjournal.com/2010/12/motion-sensing-in-the-iphone-4-mems-accelerometer.html
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Accelerometer
Basics

• Measures force exerted on device (vector)

• Stationary device, lying flat:
• Force preventing it from falling (opposite to gravity)

• Zero force � Free fall

• Stationary device, after 45o rotation:
• Same magnitude, but rotated
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Accelerometer
Example code (1/3)
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public class SensorActivity extends Activity 

implements SensorEventListener {

private SensorManager mSensorManager;

private Sensor mAccelerometer;

@Override

Public final onCreate(Bundle savedInstanceState) {

mSensorManager = \

(SensorManager)getSystemService(Context.SENSOR_SERVICE);

mAccelerometer = \

mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

mSensorManager.registerListener( \

this, mAccelerometer, \

SensorManager.SENSOR_DELAY_NORMAL);

}

Android (1/2)

[continued]

Accelerometer
Example code (2/3)
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@Override

public final void onSensorChanged(SensorEvent event) {

float ax = event.values[0], 

ay = event.values[1],

az = event.values[2];

...

}

@Override

public final void onAccuracyChanged(Sensor sensor, int accuracy) 

{ ... }

...

}  // SensorActivity

Android (2/2)

[continued]

Accelerometer
Example code (3/3)
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iPhone

[[UIAccelerometer mAccelerometer] setDelegate :self];

...

- (void) accelerometer:(UIAccelerometer *)accelerometer,

didAccelerate:(UIAcceleration *)acceleration {

float gx = acceleration.x;

float gy = acceleration.y;

...

}

Accelerometer
Shortcomings

• Cannot distinguish between gravity and acceleration
• Impossible: “equivalence principle”

• Solution: use low-pass filter to estimate gravity

• What if device simultaneously rotates & linearly accelerates?
• Confused; need more data � gyroscope
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Gyroscope
Introduction

• Measures angular speed
• Degrees per second (dps)

• Example*: L3G4200D (iPhone)
• ~$6.5 (DigiKey, bulk)

• 18mW on / 4.5mW sleep (0.02mW off):

12.5 days / 50 days

• ±250dps / ±500dps / ±2000dps range

• 16-bit dynamic range

• 100 / 200 / 400 / 800Hz sample rate

• Temperature sensor (8-bit range)

• Simple interrupt generator & FIFO
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STMicro L3G4200D 

http://www.memsjournal.com/2011/01/motion-sensing-in-the-iphone-4-mems-gyroscope.html



3

Gyroscope
Basics

• Measures angular speed of rotation
• Represented by numbers for each axis (but: rotation axis is different)

• Right-hand rule

• Integrate to obtain orientation
• …with care, since non-collinear rotations are not commutative
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Magnetometer (compass)
Introduction

• Measures direction and magnitude of 
(Earth’s) magnetic field

• Example*: AK8973/5 (iPhone)
• <$1 (Wikipedia), ~$2 (AliExpess; non-bulk)

• 20mW sensor on / 3mW @10Hz:

11 days / 76 days
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AKM AK8975

http://www.memsjournal.com/2011/02/motion-sensing-in-the-iphone-4-electronic-compass.html
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Inertial measurement & navigation

• 9 DoF (degrees of freedom) available
• 3-axis accelerometer

• 3-axis gyro

• 3-axis magnetometer

• Combine in software for accurate:
• Position, velocity, and acceleration (linear and angular)

• Dead reckoning
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Inertial measurement
Gravity estimation

Low-pass filter on acceleration data; 
e.g., on Android Gingerbread:

��� = �� ∙ ��� + ����� + �� ∙ ����� − �� ∙ ����� − �� ∙ �����

where  �� , �� depend on sampling rate and user-defined decay parameters

Basic operation, also used for:

• Linear acceleration estimate ��� − ���
• Rotation vector (orientation wrt. magnetic north)
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Inertial navigation
Dead reckoning

1. Integrate gyro to obtain orientation

2. Use accelerometer and gyro (orientation) data to estimate 
linear acceleration

3. Doubly integrate acceleration to obtain position change

• Errors accumulate over time (~ !)

• Error depends on sampling rate

• How accurate is it?

• “Pro” (air navigation) answer:
• GPS: better than 9m

• Inertial: ~650m after one hour
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Other sensors

• Proximity

Less common:

• Thermometer
• But: gyroscope & compass often has temperature output as well

• Light

• Pressure (barometric) � altitude
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Location APIs

• Low-level location providers:
• GPS

• WiFi

• Cell tower

• …

• Mid-level:
• Fused location providers

• Higher-level:
• Geo-fencing

• Activity recognition
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Location APIs
Location providers (low-level)

• GPS, WiFi, cell tower, …

• Differ in:
• Accuracy

• Availability / freshness

• Power consumption

• Listen for location updates

• Choose how to update location estimate
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Location APIs
Fused location services

• Combine different location providers

• User specifies:
• Min and max update period

• Accuracy preferences

• Location service takes care of managing different low-level 
providers, to obtain best accuracy at low(est) power
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Location APIs
Geo-fences and activities

Geo-fencing:

• User specifies a POI or map area

• Requests to receive alerts when user is near / inside fence

Activity recognition (Android APIs):

• Use sensor and location data to detect what user is doing

• Walking vs cycling vs driving

• Provides probability for each activity
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Indoor localization

• No O/S level APIs (?)

• Google Maps offers indoors navigation
• Mix of WiFi-based localization and (very rough) dead reckoning

• May be possible to obtain WiFi RSS data
• Android offers APIs, iOS is restricted

• Other applications have used other signals (like audio)

• Custom solutions also exist (e.g., ultrasound-based)

• More on this later …
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Overview

• Sensors

• Network connectivity

• Power

• Mobile app basics
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Cellular

• Various standards have evolved over the years

• Hard to track (too much marketing hype…)

• But: rapidly increasing bandwidth and decreasing cost
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Standard Year** D/L (max)* U/L (max)*

GPRS 1997 60-80kb/s 20-40kb/s

EDGE 2003 177-237kb/s 60-118kb/s

HSPA 2006 14-42mb/s 1(?)-6mb/s

HSPA+ 2008 28-168mb/s 11-22mb/s

LTE 2010 12-300mb/s 5-75mb/s0
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*numbers based on marketing claims,
please take with grain(s) of salt

**approx. year (first major deployment).

Cellular

• Historical technologies: 
• 2G: GPRS (GSM)

• 2.5G: EDGE

• Current technologies: 
• “3G”: UMTS (HSDPA, HSUPA, HS[DP]A+)

• “4G”: LTE

• Other technologies (failed adoption):
• WiBro, WiMax, …
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802.11b/g/n (WiFi)

• Introduced around the same time as GPRS

• Evolved over time: bandwidth and ubiquity
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Protocol Year B/W       
(Mbit/s max)

— 1997 2

b 1999 11

g 2003 54

n 2009 72.2 (2.4GHz)

150 (5GHz)

ac (draft) 2012 88-867
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Bluetooth

Class mW

(max)

Range 

(m)

1 100 100

2 2.5 10

3 1 1
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Version Data rate 

(Mbit/s)

1.2 1

2.0 + EDR 3

3.0 + HS 24

• Developed by Ericsson in 1994

• Standardized in 1998

• Developed over years

• Designed almost concurrently with 
WiFi; designed for short-range 
communications with peripherals 
(not Ethernet/IP packets only)
• Fairly complex

• Fairly ubiquitous

Bluetooth Low Energy (BLE)

Spec Bluetooth “Classic” BLE

Range (max) 100m 50m

Data rate 1-3Mbit/s 1Mbit/s

App. throughput 0.7-2.1Mbit/s 0.27Mbit/s

Latency 100ms (typ.) 6ms

Time to send data 100ms ~3ms

Peak current <30 mA <15 mA

Power consumption 100% (reference) 10-50% (use case dep.)
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• Entirely separate stack (Zigbee derivative)

• Goals: low power, low latency, low(er) cost

• Initially developed by Nokia, became standard in 2010

• Standard on iPhone, not yet on Android

Other

• Zigbee / XBee

• Cheap transceivers (e.g., Nordic chipsets)

• Non-standard (on phones), require ugly dongles, etc.

• But, might be worth it for prototyping
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Overview

• Sensors

• Network connectivity

• Power

• Mobile app basics
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Power overview
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//device/samsung/crespo/+/android-4.1.2_r2.1/overlay/frameworks/base/core/res/res/xml/power_profile.xml

Cellular and WiFi power
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• Overall comparable power draw

• WiFi can consume substantially 
less (esp. if kept connected)

• But cellular is always available/on

• One larger transfer is much better 
than many small ones

Bluetooth power

• Comparable to WiFi

• Bluetooth 4.0 (BLE):
• Up to 10x lower power draw

• Lower latency & cost

• Designed for peripherals / sensors

• iPhone: standard

• Android: not yet
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Sensor power

• Not substantial, per se
• 3-20 mW � several days of power 

from iPhone 5 battery

• What’s the big deal?

• CPU power consumption!

• For reasonable accuracy: 200Hz 
sample rate � prevents CPU 
from entering sleep mode  (more 
soon…)

• Solution: dedicated processor; 
either
• Separate app.-specific processor chip

• All-in-one IMU chip (e.g., MPU6050)
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iPhone 5
(datasheets)

Inertial sensors

Frequency scaling
CPU power
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Samsung Nexus S

• All modern processors can 
adjust speed based on 
workload

• DVFS (dynamic voltage 
frequency scaling)

• Several policies; defaults 
are usually fine

• Power consumption is 
proportional to clock speed 
(plus a fixed penalty – this 
is important)
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Advanced sleep modes
CPU power
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• If doing no work, it’s much better 
to turn off CPU completely

• Even for a few milliseconds (better 
than nothing)

• Around 30x less power draw

• All modern phones will do this 
automatically
• Additionally, facilities to reduce 

number of wakeups; e.g., batching 
timer events, background messaging 
(aka. push notifications), etc.

Display power

• Substantial power draw, esp. at 
high brightness

• Not really relevant for sensing 
applications (unless user 
interaction is required?)
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Power consumption summary
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• Primary power consumers:
• CPU

• Radios

• Display

40 days

4 hrs

16 hrs

8 hrs

5½  hrs

Suspend
no radio
(~5mW)

Power overview
Nexus S (Dec 2010) vs Nexus 4 (Nov 2012)
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2100mAh: 1500mAh:Phones released 
two years apart: 
mostly similar
• (Except WiFi, not sure 

what’s going on there…)

• Battery capacity up.. a bit

Don’t assume power 
draw will magically 
go down; need to 
actively manage it in 
your design and 
code!

Overview

• Sensors

• Network connectivity

• Power

• Mobile app basics
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Programming paradigm
Heavily event-oriented !

Application must respond to its environment; e.g.
• Network connectivity changes
• Incoming calls / messages / events
• Sensor / location data
• …

Application must use resources efficiently; e.g.
• May be pre-empted and/or killed at any time
• May choose to respond to status information (e.g, battery level)
• …

Cannot:
• Assume a single main() thread with sequential flow
• Control lifetime of thread(s)
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Programming paradigm

Android: activity paradigm

• You can think of an activity as a screen

• Can be in different states during it’s lifecycle

• Need to respond to state-change events

• System determines state based on:
• User interactions (e.g., start a different activity)

• External events (e.g., screen rotation, incoming call, …)

• Available resources (memory, CPU, etc)

• Execute in the main app thread

• Responsible for persisting any app-specific state, as 
necessary
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Activity lifecycle (Android)
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Background tasks

Short lived (e.g., fetch a URL):

• Can be started in separate threads

• But: need to be prepared for activity termination/restart

Long lived:

• Need to use system APIs to register themselves and allow 
system to manage them

• Timers, background services, RPC interfaces

Avoid whenever possible!!

• Use system services instead, e.g., geo-fences, push 
notifications, etc
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MINING DATA FROM MOBILE DEVICES

Mobile technology overview

Spiros Papadimitriou, Tina Eliassi-Rad
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License

These slides are made available under a Creative Commons Attribution-
ShareAlike license (CC BY-SA 3.0):

http://creativecommons.org/licenses/by-sa/3.0/

You can share and remix this work, provided that you keep the attribution 
to the original authors intact, and that, if you alter, transform, or build 
upon this work, you may distribute the resulting work only under the same 
or similar license to this one.

© 2013 Spiros Papadimitriou, Tina Eliassi-Rad
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